New Synthesis of Highly Potential Efficient Bluish-Green Electroluminescent Materials 165
δ 14.21, 14.30, 22.38, 26.46, 28.85, 31.31, 42.90,
64.26, 110.10, 110.40, 113.88, 120.29, 120.99, 121.52,
122.08, 122.18, 122.41, 123.15, 124.89, 125.55,
126.77, 1274.18, 134.27, 141.26, 146.69, 149.62,
152.99, 158.49, 162.61, 168.27, 168.91; IR (KBr) 1602
(m, C N), 1720 (m, C O) cm−1; FABMS m/z (relative
intensity) 572 (M, 40), 573 (M + 1, 30), 541 (100), 121
(60). Anal. Calcd for C34H32ClN6O3: C, 71.31; H, 5.63;
N, 14.48. Found: C, 71.35; H, 5.60; N, 14.68.
6-(5-(9-Hexyl-9H-carbazol-2-yl)-1,3,4-oxadiazol-
2-yl)-2-p-tolyl-[1,2,4]triazolo[4,3-a]pyridin-
3(2H)-one 4b
A solution of 9-hexyl-2-[5-(pyridin-3-yl)-1,3,4-oxa-
diazol-2-yl]-9H-carbazole 3 (0.51 g, 1.32 mmol,
1.0 equiv.) was stirred in i-PrOH (15 mL) and tri-
ethylamine (1.0 mL) solution. The reaction mixture
was heated up to 80◦C. ꢀ-Chloroformylarylhydrazine
hydrochloride (0.29 g, 1.46 mmol, 1.1 equiv.) was
added into the reaction mixture. After the reaction
was completed, the hot-filtration was performed and
washed with cold ethanol (10 mL) to isolate the solid
crude product. The crude product was dried and
crystallized from CH2Cl2 to give a pure 4b as light
yellow solid in 65% yield (473 mg, 0.872 mmol):
mp 265–267◦C; 1H NMR (DMSO-d6, 200 MHz): δ
0.78 (t, J = 7.2 Hz, 3H, CH3), 1.20–1.30 (m, 6H,
CH2), 1.79 (m, 2H, CH2), 2.35 (s, 3H, CH3), 4.46
(t, J = 6.9 Hz, 2H, CH2), 7.29–7.34 (m, 2H), 7.52 (t,
J = 5.0 Hz, 1H), 7.76 (d, J = 4.5 Hz, 2H), 7.84–7.96
(m, 4H), 8.28 (d, J = 3.1 Hz, 1H), 8.42 (d, J = 3.2 Hz,
1H), 8.74 (s, 1H), 9.03 (s, 1H); 13C NMR (DMSO-d6,
50 MHz): δ 14.21, 21.38, 22.89, 26.45, 28.88, 31.21,
42.89, 110.30, 113.86, 120.39, 121.62, 122.30, 122.58,
122.71, 123.25, 124.29, 125.55, 126.77, 127.22,
134.27, 141.15, 142.56, 147.69, 149.42, 152.59,
158.39, 162.91, 168.57, 169.71; IR (KBr) 1602 (m,
C N), 1722 (m, C O) cm−1; FABMS m/z (relative in-
tensity) 542 (M, 15), 543 (M + 1, 14), 318 (100), 91
(50). Anal. Calcd for C33H30ClN6O2: C, 73.04; H, 5.57;
N, 15.49. Found: C, 73.04; H, 5.57; N, 15.55.
REFERENCES
[1] (a) Tang, C. W.; Slyke, S. A. V. Appl Phys Lett 1987,
51, 913; (b) Tamoto, N.; Adachi, C.; Nagai, K. Chem
Mater 1997, 9, 1077.
[2] Jiang, X.; Register, R. A.; Killeen, K. A.; Thompson,
M. E.; Pschenitzka, F.; Hebner, T.; Sturm, J. C. J Appl
Phys 2002, 91, 6717.
[3] Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. Appl
Phys Lett 1993, 63, 2627.
[4] Wu, C. C.; Sturm, J. C.; Register, R. A.; Tian, J.; Dana,
E. P.; Thompson, M. E. IEEE Trans Electron Devices
1997, 44, 1269.
[5] Kido, J.; Shionoya, H.; Nagai, K. Appl Phys Lett 1995,
67, 2281.
[6] Peng, Z.; Bao, Z.; Galvin, M. E. Adv Mater 1998, 10,
680.
[7] Jiang, X. Z.; Register, K. A.; Killeen, K. A.; Thompson,
M. E.; Pschenitzka, F.; Sturm, J. C. Chem Mater 2000,
12, 2542.
[8] Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Tao, Y.-T.;
Chuen, C.-H. Adv Funct Chem 2004, 14, 387.
[9] Giannangeli, M.; Cazzolla, N.; Luparini, M. R.;
Magnani, M.; Mabilia, M.; Picconi, G.; Tomaselli, M.;
Baiocchi, L. J Med Chem 1999, 42, 336.
[10] To be submitted.
[11] Marcher, B.; Chapoy, L.; Christensen, D. H.; Macro-
molecules 1998, 21, 677.
[12] Scott, J. C.; Pautmeier, L. T.; Moerner, W. E. J Opt Soc
Am 1992, 9, 2059.
[13] (a) Zhang, Y.; Wang, L.; Wada, T.; Sasabe, H. Chem
Commun 1996, 559; (b) Kuo, W.-J.; Hsiue, G.-H.;
Jeng, R.-J. J Mater Chem 2002, 12, 868.
[14] (a) Thomas, K. R. J.; Lin, J. T.; Tao, Y.-T.; Ko,
C.-W. J Am Chem Soc 2001, 123, 9404; (b) Thomas,
K. R. J.; Lin, J. T.; Lin, Y.-Y.; Tsai, C.; Sun, S.-S.;
Organometallics 2001, 20, 2262; (c) Thomas, K. R. J.;
Lin, J. T.; Tao, Y.-T.; Chuen, C.-H. Chem Mater 2002,
14, 3852.
[15] Ostraskaite, J.; Voska, V.; Antulis, J.; Gaidelis, V.;
Jankauskas, V.; Grazulevicius, J. V. J. Mater Chem
2002, 12, 3469.
[16] Wang, C.; Jung, G.-Y.; Batsanov, A, S.; Bryce, M. R.;
Petty, M. C. J Mater Chem 2002, 12, 173.
[17] Fox, H. H.; Gibas, J. T. J. Org Chem 1953, 18, 1375.
[18] Chiu, C.-Y.; Kuo, C.-N.; Kuo, W.-F.; Yeh, M.-Y. J Chin
Chem Soc 2002, 49, 239.
[19] Thelakkat, M.; Schmidt, H.-W. Adv Mater 1998, 10,
219.
[20] Tian, H.; Ni, W.; Su, J.; Chen, K. J Photochem Photo-
biol A 1997, 109, 2296.
2-(4-Ethoxyphenyl)-6-(5-(9-hexyl-9H-carbazol-
2-yl)-1,3,4-oxadiazol-2-yl)-[1,2,4]triazolo[4,3-a]-
pyridin-3(2H)-one 4c
A solution of 9-hexyl-2-[5-(pyridin-3-yl)-1,3,4-oxa-
diazol-2-yl]-9H-carbazole 3 (0.55 g, 1.36 mmol,
1.0 equiv.) was stirred in i-PrOH (15 mL) and tri-
ethylamine (1.0 mL) solution. The reaction mixture
was heated up to 80◦C. ꢀ-Chloroformylarylhydrazine
hydrochloride (0.34 g, 1.49 mmol, 1.1 equiv.) was
added into the reaction mixture. After the reaction
was completed, the hot-filtration was performed and
washed with cold ethanol (10 mL) to isolate the solid
crude product. The crude product was dried and
crystallized from CH2Cl2 to give a pure 4c as light
yellow solid in 68% yield (530 mg, 0.925 mmol):
mp 294–296◦C; 1H NMR (DMSO-d6, 200 MHz): δ
0.78 (t, J = 7.2 Hz, 3H, CH3), 1.22–1.34 (m, 9H),
4.02 (q, J = 5.0 Hz, 2H, CH2), 1.79 (m, 2H, CH2),
4.46 (t, J = 6.9 Hz, 2H, CH2), 4.46 (t, J = 6.9 Hz,
2H, CH2), 7.28–7.33 (m, 2H), 7.67–7.55 (m, 4H), 7.89
(d, J = 3.7 Hz, 2H), 8.1 (d, J = 3.5 Hz, 2H), 8.20 (d,
J = 3.6 Hz, 1H), 8.35 (d, J = 4.0 Hz, 1H), 8.78 (s,
1H), 9.05 (s, 1H); 13C NMR (DMSO-d6, 50 MHz):
[21] Demas, J. N.; Crosby, G. A. J Phys Chem 1971, 75, 991.
[22] Wang, C.; Jung, G.-Y.; Hua, Y.; Pearson, C.; Bryce,
M. R.; Petty, M. C.; Batsanov, A. S.; Goeta, A. R.;
Howard, J. A. Chem Mater 2001, 13, 1167.