C O M M U N I C A T I O N S
Table 3. Copper-Catalyzed Asymmetric [4+1] Cycloadditions:
In conclusion, we have described the first examples of diastereo-
and enantioselective copper-catalyzed [4+1] cycloadditions of
enones with diazo compounds. This new method furnishes syntheti-
cally useful, highly substituted 2,3-dihydrofuran derivatives with
good efficiency and stereoselection. Additional studies of asym-
metric copper-catalyzed reactions of diazo compounds are under-
way.
Acknowledgment. We thank Michael M.-C. Lo for preliminary
studies. Support has been provided by the NIH (National Institute
of General Medical Sciences Grant R01-GM66960), Merck Re-
search Laboratories, and Novartis. Funding for the MIT Department
of Chemistry Instrumentation Facility has been furnished in part
by NIH Grant IS10RR13886 and NSF Grant DBI-9729592.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
Scopea
entry
R
R1
yield (%)b
dr
ee (%)
1
2
Ph
Ph
Ph
Ph
Ph
79
59
77
84
81
84
68
63
76
92
69
80
13:1
19:1
19:1
>20:1
>20:1
9:1
>20:1
6:1
7:1
85
76
88
92
88
93
93
87
93
78
75
71
4-(F3C)C6H4
4-ClC6H4
4-(MeO)C6H4
Ph
3
4c
5
4-ClC6H4
4-(MeO)C6H4
Ph
3-furyl
CHdCHPh
n-Bu
6
7
8
9
10
11
12
Ph
N-Boc-2-pyrrolyl
Ph
Ph
Ph
n-Hex
n-Hex
>20:1
13:1
>20:1
Ph
Me
References
a All data are the average of two runs. b Isolated yield of the trans
diastereomer. c The product was hydrolyzed and then acetylated prior to
isolation.
(1) For a review and leading references, see: Kilroy, T. G.; O’Sullivan, T.
P.; Guiry, P. J. Eur. J. Org. Chem. 2005, 4929-4949.
(2) For leading references to the asymmetric synthesis of tetrahydrofurans,
see: (a) Hou, X.-L.; Yang, Z.; Yeung, K.-S.; Wong, H. N. C. Prog.
Heterocycl. Chem. 2005, 17, 142-171. (b) Elliott, M. C. J. Chem. Soc.,
Perkin Trans. 1 2002, 2301-2323. (c) Faul, M. M.; Huff, B. E. Chem.
ReV. 2000, 100, 2407-2473.
(3) For other catalytic asymmetric methods for the synthesis of 2,3-
dihydrofurans from achiral precursors that proceed with good enantiose-
lectivity, see: (a) Evans, D. A.; Sweeney, Z. K.; Rovis, T.; Tedrow, J. S.
J. Am. Chem. Soc. 2001, 123, 12095-12096. (b) Mueller, P.; Bernardinelli,
G.; Allenbach, Y. F.; Ferri, M.; Grass, S. Synlett 2005, 1397-1400 (two
examples, which differ in a silyl group). (c) Ishitani, H.; Achiwa, K.
Heterocycles 1997, 46, 153-156 (one example).
(4) Storm, D. L.; Spencer, T. A. Tetrahedron Lett. 1967, 8, 1865-1867. (b)
Spencer, T. A.; Villarica, R. M.; Storm, D. L.; Weaver, T. D.; Friary,
R. J.; Posler, J.; Shafer, P. R. J. Am. Chem. Soc. 1967, 89, 5497-5499.
(c) See also: Murayama, S. T.; Spencer, T. A. Tetrahedron Lett. 1969,
10, 4479-4482.
(5) Anac, O.; Daut, A. Liebigs Ann./Recl. 1997, 1249-1254. (b) Anac, O.;
Ozdemir, A. D.; Sezer, O. HelV. Chim. Acta 2003, 86, 290-298. (c) Anac,
O.; Guengor, F. S.; Kahveci, C.; Cansever, M. S. HelV. Chim. Acta 2004,
87, 408-415. (d) See also: Paulissen, R.; Hayez, E.; Hubert, A. J.;
Teyssie, P. Tetrahedron Lett. 1974, 15, 607-608.
(6) For the initial report of the synthesis of this ligand, see: Rios, R.; Liang,
J.; Lo, M. M.-C.; Fu, G. C. Chem. Commun. 2000, 377-378.
(7) For leading references to the chemistry of carbonyl ylides, see: (a)
Nitrogen, Oxygen and Sulfur Ylide Chemistry; Clark, J. S., Ed.; Oxford:
New York, 2002. (b) McMills, M. C.; Wright, D. Chem. Heterocycl.
Compd. 2002, 59, 253-314. (c) Doyle, M. P.; McKervey, M. A.; Ye, T.
Modern Catalytic Methods for Organic Synthesis with Diazo Compounds;
Wiley: New York, 1998. (d) Padwa, A. HelV. Chim. Acta 2005, 88, 1357-
1374.
Figure 1. Catalytic asymmetric synthesis of deoxy-C-nucleosides.
than those that bear only unsaturated groups. Nevertheless, the
desired dihydrofurans are generally produced in good yield and
with excellent diastereoselectivity (Table 3, entries 10-12).13
The 2,3-dihydrofuran products can be converted into a variety
of other useful families of compounds without an erosion in dr or
ee. Thus, a primary alcohol can be generated via treatment of the
cycloaddition adduct with LiAlH4 (eq 2). Furthermore, hydrolysis
and then acetylation affords an acyclic ester that bears an R and a
â stereocenter (eq 3).
(8) For leading references to catalytic asymmetric reactions of ylides formed
from diazo compounds, see: Davies, H. M. L. In ComprehensiVe
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer: New York, 2004; pp 83-94. (b) Hodgson, D. M.; Pierard,
F. Y. T. M.; Stupple, P. A. Chem. Soc. ReV. 2001, 30, 50-61.
(9) For a review of applications of bis(oxazoline)s in asymmetric catalysis,
see: Desimoni, G.; Faita, G.; Jorgensen, K. A. Chem. ReV. 2006, 106,
3561-3651.
(10) For leading references, see: Pfaltz, A. Synlett 1999, 835-842.
(11) For leading references to previous applications, see: Maier, T. C.; Fu,
G. C. J. Am. Chem. Soc. 2006, 128, 4594-4595.
(12) For reviews of chiral 2,2′-bipyridine ligands, see: (a) Malkov, A. V.;
Kocovsky, P. Curr. Org. Chem. 2003, 7, 1737-1757. (b) Fletcher, N. C.
J. Chem. Soc., Perkin Trans. 1 2002, 1831-1842.
(13) Under our standard conditions, R,â-unsaturated esters are not suitable
substrates.
(14) For some leading references, see: (a) Kool, E. T. Acc. Chem. Res. 2002,
35, 936-943. (b) Loakes, D. Nucleic Acids Res. 2001, 29, 2437-2447.
(c) Watanabe, K. A. In Chemistry of Nucleosides and Nucleotides;
Townsend, L. B., Ed.; Plenum: New York, 1994; Vol. 3, pp 421-535.
(15) To the best of our knowledge, this is the first catalytic asymmetric synthesis
of this deoxy-C-nucleoside (and the first synthesis of the “unnatural”
enantiomer).
(16) For studies of this deoxy-C-nucleoside, see: (a) Initial work: Millican,
T. A.; Mock, G. A.; Chauncey, M. A.; Patel, T. P.; Eaton, M. A. W.;
Gunning, J.; Cutbush, S. D.; Neidle, S.; Mann, J. Nucleic Acids Res. 1984,
12, 7435-7453. (b) Matsuda, S.; Romesberg, F. E. J. Am. Chem. Soc.
2004, 126, 14419-14427. (c) Mathis, G.; Hunziker, J. Angew. Chem.,
Int. Ed. 2002, 41, 3203-3205. (d) Guckian, K. M.; Schweitzer, B. A.;
Ren, R. X.-F.; Sheils, C. J.; Tahmassebi, D. C.; Kool, E. T. J. Am. Chem.
Soc. 2000, 122, 2213-2222.
Deoxy-C-nucleosides are of interest in medicinal chemistry as
mimics of naturally occurring nucleosides.14 We have established
that our Cu/bpy*-catalyzed [4+1] cycloaddition can be applied to
the expeditious catalytic asymmetric synthesis of this class of
compounds (Figure 1). Cycloaddition of an R-diazoacetate to the
illustrated vinylogous ester furnishes a 2,3-dihydrofuran, which is
not isolated because of its sensitivity. Hydrogenation of the olefin
and then reduction of the ester affords the desired tetrahydrofuran
in good yield and diastereoselectivity (77% yield for three steps;
>20:1 dr). Deprotection of the trimethylsilylethyl group then
provides the deoxy-C-nucleoside (94% ee).15,16
JA068344Y
9
J. AM. CHEM. SOC. VOL. 129, NO. 5, 2007 1047