7272 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 25
Scheme 1. Synthesis of Tertiary Carbinamine Inhibitorsa
Letters
implications of this observation are not fully understood in terms
of inhibitor design. Unfortunately, because of the presence of
the P2 sulfonamide and P3 amide, 8 was not predicted to be
brain penetrant based on our in vitro P-gp assay. The optimiza-
tion of the tertiary carbinamine derived BACE-1 inhibitors
toward achieving this goal is an ongoing effort.
Acknowledgment. The authors thank Joan Murphy for mass
spectral data, Steve Pitzenberger for assistance with the structural
assignment of 3, Carl Homnick for chiral separations, B. Wesley
Trotter and James C. Barrow for thoughtful proofreading of this
manuscript, and Bryan T. Mott for the described second-
generation synthesis of 8. PyMol, version 0.99, distributed by
DeLana Scientific LLC, was utilized to generate Figures 2 and
4.
a (a) Benzylserinediol, i-Pr2NEt, BOP reagent, CH2Cl2, 27%; (b) 5%
TFA, CH3CN/H2O, 80%; (c) Boc-NHNH2, EDC, HOAt, DMF, 95%; (d)
HCl, CH2Cl2, 100%; (e) N-Boc-R-Me-Phe-OH, CDI, then CBr4, Ph3P,
CH2Cl2, 75%; (f) HCl, CH2Cl2, 97%; (g) BH3, THF, 95%; (h) CBr4, Ph3P,
Im, CH3CN/CH2Cl2, 53%; (i) benzylserine diol, NaHMDS, DMF, 79%,
then ChiralPak AD separation; (j) (R)-R-Me-phenylalaninol, NaHMDS,
DMF, 74%; (k) (R)-N-Boc-R-Me-Phe-OH, Cs2CO3, DMF, 86%; (l) HCl,
CH2Cl2, 95%.
Supporting Information Available: Experimental procedures
for the synthesis of compounds 3-8. This material is available free
References
(1) Nussbaum, R. L.; Ellis, C. E. Alzheimer’s disease and Parkinson’s
disease. N. Engl. J. Med. 2003, 348, 1356-1364.
(2) Cummings, J. L. Alzheimer’s disease. N. Engl. J. Med. 2004, 351,
56-67.
cathepsin D at 100 µM. We believe this selectivity is built into
the isophthalimide scaffold, exploiting the hydrophilic nature
of the BACE-1 S2 pocket compared to BACE-2, renin, and
cathepsin D.19 Hence, the utility of tertiary carbinamines as a
general “warhead” motif for aspartyl protease inhibition remains
to be fully explored.
(3) Roberds, S. L.; Anderson, J.; Basi, G.; Bienkowski, M. J.; Branstetter,
D. G.; Chen, K. S.; Freedman, S.; Frigon, N. L.; Games, D.; Hu, K.;
Johnson-Wood, K.; Kappenman, K. E.; Kawabe, T.; Kola, I.; Kuehn,
R.; Lee, M.; Liu, W.; Motter, R.; Nichols, N. F.; Power, M.;
Robertson, D. W.; Schenk, D.; Schoor, M.; Shopp, G. M.; Shuck,
M. E.; Sinha, S.; Svensson, K. A.; Tatsuno, G.; Tintrup, H.; Wijsman,
J.; Wright, S.; McConlogue, L. BACE knockout mice are healthy
despite lacking primary â-secretase activity in the brain. Hum. Mol.
Genet. 2001, 10, 1317-1324.
(4) Recent reviews on aspartyl protease inhibition: Spalenstein, A.;
Kazimierski, W. M.; Miller, J. F.; Samano, V. Discovery of next
generation inhibitors of HIV protease. Curr. Top. Med. Chem. 2005,
5, 1589-1607. Ghosh, A. K.; Kumaragurubaran, N.; Tang, J. Recent
developments of structure based â-secretase inhibitors for Alzheimer’s
disease. Curr. Top. Med. Chem. 2005, 5, 1609-1622. Linton, S. D.
Caspase inhibitors: a pharmaceutical industry perspective. Curr. Top.
Med. Chem. 2005, 5, 1697-1717.
(5) Yang, W.; Lu, W.; Lu, Y.; Zhong, M.; Sun, J.; Thomas, A. E.;
Wilkinson, J. M.; Fucini, R. V.; Lam, M.; Randal, M.; Shi, X.-P.;
Jacobs, J. W.; McDowell, R. S.; Gordon, E. M.; Ballinger, M. D.
Aminoethylenes: a tetrahedral intermediate isostere yielding potent
inhibitors of the aspartyl protease BACE-1. J. Med. Chem. 2006,
49, 839-842.
(6) Recent examples of brain penetrant hydroxyethylamine derived
inhibitors: (a) John, V.; Hom, R.; Sealy, J.; Aquino, J.; Probst, G.;
Tung, J.; Fang, L. Preparation of N-(3-amino-2-hydroxypropyl)-
acetamide as aspartyl protease and â-secretase inhibitors for treating
conditions associated with amyloidosis such as Alzheimer’s disease.
WO 2005070407, 2005. (b) Durham, T. B.; Hahn, P. J.; Kohn, T. J.;
McCarthy, J. R.; Broughton, H. B.; Dally, R. D.; Gonzalez-Garcia,
M. R.; Henry, K. J., Jr.; Shepherd, T. A.; Erickson, J. A.; Bueno-
Melendo, A. B. Preparation of acylated 2-amino-1-(morpholin-3-yl)-
ethanols and derivatives as BACE inhibitors for treating Alzheimer’s.
WO 2006034093, 2006.
(7) (a) Oefner, C.; Binggeli, A.; Breu, V.; Bur, D.; Clozel, J.-P.; D’Arcy,
A.; Dorn, A.; Fischli, W.; Gru¨ninger, F.; Gu¨ller, R.; Hirth, G.; Ma¨rki,
H. P.; Matthews, S.; Mu¨ller, M.; Ridley, R. G.; Stadler, H.; Vieira,
E.; Wihelm, M.; Winkler, F. K.; Wostl, W. Renin inhibition by
substituted piperidines: a novel paradigm for the inhibition of
monomeric aspartic proteinases? Chem. Biol. 1999, 6, 127-131. (b)
Prade, L.; Jones, A. F.; Boss, C.; Richard-Bildstein, S.; Meyer, S.;
Binkert, C.; Bur, D. X-ray structure of plasmepsin II complexed with
a potent achiral inhibitor. J. Biol. Chem. 2005, 280, 23837-23843.
(8) Stachel, S. J.; Coburn, C. A.; Steele, T. G.; Jones, K. G.; Loutzenhiser,
E. F.; Gregro, A. R.; Rajapakse, H. A.; Lai, M.-T.; Crouthamel,
M.-C.; Xu, M.; Tugusheva, K.; Lineberger, J. E.; Pietrak, B. L.;
Espeseth, A. S.; Shi, X.-P.; Chen-Dodson, E.; Holloway, M. K.;
Munshi, S.; Simon, A. J.; Kuo, L.; Vacca, J. P. Structure-based design
of potent and selective cell-permeable inhibitors of human â-secretase
(BACE-1). J. Med. Chem. 2004, 47, 6447-6450. Hom, R. K.;
Gailunas, A. F.; Mamo, S.; Fang, L. Y.; Tung, J. S.; Walker, D. E.;
Davis, D.; Thorsett, E. D.; Jewett, N. E.; Moon, J. B.; John, V. Design
and synthesis of hydroxyethylene-based peptidomimetic inhibitors
of human â-secretase. J. Med. Chem. 2004, 47, 158-164.
Synthesis of the inhibitors 3-8 began with the isophthalimide
derivative 9 (Scheme 1). Coupling with benzylserine diol gave
amide 4, which underwent acid-catalyzed N,O acyl migration,
providing an alternative route to inhibitor 3. Coupling of 9 with
Boc-hydrazine and acid mediated deprotection gave access to
the benzoyl hydrazide derivative of 9. Activation of (R)-N-Boc-
R-Me-Phe-OH with CDI, addition of the benzoyl hydrazide,
followed by dehydration with CBr4/Ph3P in the same pot
provided desired the oxadiazole.20 Deprotection of the Boc group
gave inhibitor 8. Acid 9 was transformed to the benzyl bromide
derivative 10 via borane reduction and treatment of the resulting
benzyl alcohol with CBr4/Ph3P. The ether bond of inhibitor 5
was constructed by the deprotonation of benzylserine diol with
base, followed by treatment with intermediate 10. Separation
of the resulting diastereomeric mixture on a chiral stationary
phase provided 5. Etherification with (R)-R-Me-phenylalaninol
under the same conditions provided 6. Esterification of (R)-N-
Boc-R-Me-Phe-OH with 10 utilizing Cs2CO3 as the base
followed by acid mediated Boc deprotection afforded 7 in high
yield.
In summary, we report the discovery of novel non-transition-
state isostere derived inhibitors of BACE-1. The central tertiary
carbinamine moiety interacts with three key residues of the target
enzyme: the catalytic aspartates Asp32 and Asp228 and the
carbonyl of Gly230. We also report a novel vector for accessing
the S1 pocket of BACE-1. Utilizing structure-based information,
this series was optimized to the stable tertiary carbinamine
oxadiazole 8, which has intrinsic and functional potency
comparable to evolved hydroxyethylamine inhibitors of BACE-1
exemplified by 1.
The “warhead” fragment represented by the tertiary carbi-
namine oxadiazoles has been significantly simplified in terms
of hydrogen bond donors and acceptors compared to transition
state isostere derived inhibitors. Additionally, the tertiary
carbinamine inhibitors cause a highly unusual “induced fit” of
the BACE-1 catalytic aspartates, twisting Asp32 such that this
residue is orthogonal to the plane defined by Asp228. The