Table 1. Absorption and Fluorescence Spectral Data of 3a-e and Their Hg2+, Cu2+ and Pb2+ Chelates in ACN
λabs, nm
ꢀ,104 M-1 cm-1
λflu, nm
FEFb
Ka, 104 M-1c
Φd
τ, nse
kr, s-1
krl, s-1
3a
226/260
239/265
226/260
226/260
228/276
238/313
228/313
228/276
226/276
237/312
226/312
226/276
228/276
238/313
228/276
228/276
225/262
238/259
225/262
225/262
3.43/2.17
3.78/2.08
3.43/1.04
3.43/2.17
4.17/0.68
4.76/0.58
4.17/0.19
4.17/0.68
4.70/0.58
4.58/0.58
4.70/0.32
4.70/0.58
4.17/0.68
4.63/0.55
4.17/0.68
4.17/0.68
3.53/1.61
3.60/1.62
3.53/1.61
3.53/1.61
385a
450
450
450
385a
462
462
462
385a
460
460
460
385a
457
457
457
385a
450
450
450
0.00051
0.00092
f
f
3a + Hg2+
3a + Cu2+
3a + Pb2+
3b
2.7
1.3
1.2
4.49 ( 0.69
0.00078
0.60
0.14
0.045
0.00076
0.57
0.178
29.38
0.44 × 107
2.04 × 107
5.61 × 109
1.36 × 107
3b + Hg2+
3b + Cu2+
3b + Pb2+
3c
3c + Hg2+
3c + Cu2+
3c + Pb2+
3d
3d + Hg2+
3d + Cu2+
3d + Pb2+
3e
3e + Hg2+
3e + Cu2+
3e + Pb2+
647
243
37
>103
4.96 ( 0.84
1.88 ( 0.33
0.204
31.23
0.37 × 107
1.83 × 107
4.90 × 109
1.38 × 107
1204
312
79
>103
3.63 ( 0.47
1.15 ( 0.17
0.13
0.038
0.00074
0.63
0.115
31.73
0.64 × 107
1.99 × 107
8.69 × 109
1.17 × 107
855
341
50
>103
4.94 ( 0.92
1.70 ( 0.26
0.13
0.035
0.00040
0.0096
0.0038
0.00074
0.148
0.964
0.27 × 107
1.00 × 107
6.75 × 109
1.03 × 109
53
8.0
2.5
>103
2.20 ( 0.32
a 3a-e are extremely weakly fluorescent, and their emission maxima were therefore located at ca. 385 nm with uncertainty. b Fluorescence enhancement
factor, ratio of the intensity of 3 in the presence of 50 equiv of metal ion to that in the absence of metal ion. c Metal binding constant was obtained via
nonlinear fitting of the fluorescence titration data assuming a 1:1 binding stoichiometry; see: Bourson, J.; Pouget, J.; Valeur, B. J. Phys. Chem. 1993, 97,
4552-4557. Nice fitting supported the assumed 1:1 stioichiometry, which was also confirmed by Job plots (Figure S4). d The uncertainties in the fluorescence
quantum yields were within 10% for 3-metal chelates and within 30% for 3a-e. e Lifetimes were measured on a nanosecond TCSPC setup with a pulsed
N2 lamp; for details, see: Leinhos, U.; Ku¨hnle, W.; Zachariasse, K. A. J. Phys. Chem. 1991, 95, 2013-2021. f The lifetimes are too short to be measured
on this nanosecond setup.
weakly fluorescent and metal binding to 8-HQ blocks the
ESIPT channel, thereby restoring the fluorescence.2,5a 8-HQ
could hence be employed to build fluorescent chemosensors
for metal ions via ESIPT suppression, with increased
fluorescence signal upon metal binding. To enhance metal
binding selectivity of 8-HQ, introduction of additional
binding sites at the C-2 and/or C-7 positions, adjacent to
the original binding sites in 8-HQ (Figure 1), has been
extensively examined.3-6 In the case where 8-HQ was
substituted with methyleneamine at the C-2 or C-7 position,
a photoinduced electron transfer (PET) process leading to
fluorescence quenching was recently identified,4a and metal
binding resulting in PET suppression was also demonstrated,
which mechanism is currently intensively employed in
constructing fluorescent chemosensors for transition metal
ions operating under fluorescence enhancement mode.8 It is
noted, however, that these investigations hitherto reported
are limited mainly to 8-HQ derivatives with substituents on
the aryl ring. Derivation at the 8-OH group has not been
explored in detail. A possible reason could be that the
intensively investigated ether derivatives of 8-HQ, such as
2 (Figure 1), are highly fluorescent,9 as the ESIPT channel
is blocked, and hence not much room remains for further
fluorescence enhancement resulting from metal binding. We
report here on a new set of 8-HQ derivatives modified at
the 8-OH group, the readily synthesized benzoates of 8-HQ
(3) (a) Shults, M. D.; Imperiali, B. J. Am. Chem. Soc. 2003, 125, 14248-
14249. (b) Shults, M. D.; Pearce, D. A.; Imperiali, B. J. Am. Chem. Soc.
2003, 125, 10591-10597. (c) Pearce, D. A.; Jotterand, N.; Carrico, I. S.;
Imperiali, B. J. Am. Chem. Soc. 2001, 123, 5160-5161. (d) Jotterand, N.;
Pearce, D. A.; Imperiali, B. J. Org. Chem. 2001, 66, 3224-3228. (e)
Walkup, G. K.; Imperiali, B. J. Org. Chem. 1998, 63, 6727-6731.
(4) (a) Bronson, R. T.; Montalti, M.; Prodi, L.; Zaccheroni, N.; Lamb,
R. D.; Dalley, N. K.; Izatt, R. M.; Bradshaw, J. S.; Savage, P. B. Tetrahedron
2004, 60, 11139-11144. (b) Bronson, R. T.; Bradshaw, J. S.; Savage, P.
B.; Fuangswasdi, S.; Lee, S. C.; Krakowiak, K. E.; Izatt, R. M. J. Org.
Chem. 2001, 66, 4752-4758. (c) Prodi, L.; Montalti, M.; Zaccheroni, N.;
Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. Tetrahedron Lett. 2001, 42,
2941-2944. (d) Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su,
N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. J. Am. Chem. Soc. 2000,
122, 6769-6770. (e) Su, N.; Bradshaw, J. S.; Zhang, X. X.; Song, H.;
Savage, P. B.; Xue, G.; Krakowiak, K. E.; Izatt, R. M. J. Org. Chem. 1999,
64, 8855-8861. (f) Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N.;
Savage, P. B.; Bradshaw, J. S.; Izatt, R. M. Tetrahedron Lett. 1998, 39,
5451-5454. (g) Bordunov, A. V.; Bradshaw, J. S.; Zhang, X. X.; Dalley,
N. K.; Kou, X.; Izatt, R. M. Inorg. Chem. 1996, 35, 7229-7240. (h)
Bronson, R. T.; Michaelis, D. J.; Lamb, R. D.; Husseini, G. A.; Fransworth,
P. B.; Linford, M. R.; Izatt, R. M.; Bradshaw, J. S.; Savage, P. B. Org.
Lett. 2005, 7, 1105-1108.
(5) (a) Launay, F.; Alain, V.; Destandau, EÄ .; Ramos, N.; Bardez, EÄ .;
Baret, P.; Pierre, J.-L. New J. Chem. 2001, 25, 1269-1280. (b) Winkler, J.
K.; Bowen, C. M.; Michelet, V. J. Am. Chem. Soc. 1998, 120, 3237-3242.
(c) Hayashi, M.; Ishii, M.; Hiratani, K.; Saigo, K. Tetrahedron Lett. 1998,
39, 6215-6218. (d) Baret, P.; Be´guin, C. G.; Boukhalfa, H.; Caris, C.;
Laulhe`re, J.-P.; Pierre, J.-L.; Serratrice, G. J. Am. Chem. Soc. 1995, 117,
9760-9761.
(6) (a) Moon, S. Y.; Cha, N. R.; Kim, Y. H.; Chang, S. K. J. Org. Chem.
2004, 69, 181-183. (b) Kim, Y.-H.; Youk, J. S.; Moon, S. Y.; Choe, J.-I.;
Chang, S.-K. Chem. Lett. 2004, 33, 702-703.
(7) (a) Chen, C. H.; Shi, J. Coord. Chem. ReV. 1998, 171, 161-174. (b)
Montes, V. A.; Li, G.; Pohl, R.; Shinar, J.; Anzenbacher, P., Jr. AdV. Mater.
2004, 16, 2001-2003. (c) Pohl, R.; Montes, V. A.; Shinar, J.; Anzenbacher,
P., Jr. J. Org. Chem. 2004, 69, 1723-1725.
(8) For examples, see: (a) Ghosh, P.; Bharadwaj, P. K.; Roy, J.; Ghosh,
S. J. Am. Chem. Soc. 1997, 119, 11903-11909. (b) Ramachandram, B.;
Samanta, A. Chem. Commun. 1997, 1037-1038. (c) Nolan, E. M.; Lippard,
S. J. J. Am. Chem. Soc. 2003, 125, 14270-14271. (d) Guo, X.; Qian, X.;
Jia, L. J. Am. Chem. Soc. 2004, 126, 2272-2273.
(9) Hiratani, K. J. Chem. Soc., Chem. Commun. 1987, 960-961.
4218
Org. Lett., Vol. 7, No. 19, 2005