F. Lenda et al. / Tetrahedron Letters 48 (2007) 805–808
807
Scheme 2. Reagents and conditions: (a) substituted tetrazole, NEt3, acetone, rt; (b) NaN3, acetone, rt; (c) 5% Pd/C, MeOH, H2 (1 atm), rt; (d) (i)
BH3ÆTHF, THF, À10 °C, (ii) 6 N HCl, propylene oxide, CH2Cl2.
hydrogenation over Pd/C in methanol25 led to the corre-
sponding substituted pyroglutamic acids 9a–c by an
intramolecular aminolysis.
2. (a) Williams, M.; Kowaluk, E. A.; Arneric, S. P. J. Med.
Chem. 1999, 42, 1481–1500; (b) Roy, R. S.; Balarm, P. J.
Pept. Res. 2004, 63, 279–289.
3. (a) Hanessian, S.; McNaughton-Smith, G.; Lombart, H.
G.; Lubell, W. D. Tetrahedron 1997, 53, 12789–12854; (b)
Zouikri, M.; Vicherat, A.; Aubry, A.; Marraud, M.;
Boussard, G. J. Pept. Res. 1998, 52, 19–26; (c) Vivet, B.;
Cavelier, F.; Martinez, J. Eur. J. Org. Chem. 2000, 807–
Lactams 9a–c were reduced with BH3 in THF at
À10 °C.26 Subsequent acid hydrolysis (6 N HCl, 60 °C,
12 h) and neutralization with propylene oxide yielded
the ( )-4-(5-aryltetrazolyl)- and ( )-4-[5-(arylmethyl)-
tetrazolyl]proline.
811.
4. Voet, D.; Voet, J.; Pratt, C. Fundamentals of Biochemistry;
Wiley: New York, NY, 1999; pp 127–128.
5. For a recent review see: Kotha, S. Acc. Chem. Res. 2003,
36, 342–351.
6. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn,
M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.;
Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.;
Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J.
C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem.
2000, 43, 953–970.
7. Alvarez, R.; Velazquez, S.; San, F.; Aquaro, S.; De Clercq,
C.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Camarasa, M.
J. J. Med. Chem. 1994, 37, 4185–4194.
8. Brockunier, L. L.; Parmee, E. R.; Ok, H. O.; Candelore,
M. R.; Cascieri, M. A.; Colwell, L. F.; Deng, L.; Feeney,
W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; Tota,
L.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. Bioorg.
Med. Chem. Lett. 2000, 10, 2111–2114.
The present study describes an efficient synthesis of race-
mic 4-(4,5-dicarboxy-1H-1,2,3-triazol-1-yl)proline and
4-(5-aryltetrazolyl)- and 4-[5-(arylmethyl)tetrazolyl]pro-
line starting from dimethyl-2,4-dibromoglutarate. The
4,5-substituted-1H-1,2,3-triazol-1-yl were selectively
synthesized in position 4 of the proline by 1,3-dipolar
cycloaddition of acetylenic compounds on dimethyl-2-
azido-4-bromoglutarate followed by hydride reduction.
The 5-aryltetrazoles and the 5-(arylmethyl)tetrazoles
were selectively introduced in the 4-position of the pyr-
rolidine ring in good chemical yields. While double
substitutions of 1 with one nucleophile to give cyclic
compounds have been reported,15 to the best of our
knowledge these are the first examples of successive sub-
stitutions with two different nucleophiles on a dibromo-
glutaric acid derivative. Generalization of this method is
currently under investigation in our laboratory.
9. Fan, W. Q.; Katritzky, A. R. In Comprehensive Hetero-
cyclic Chemistry II; Katritzky, A. R., Rees, C. W., Seriven,
E. F. V., Eds.; Elsevier Science: Oxford, 1996; Vol. 4, pp
1–126.
10. Monn, J. A.; Valli, M. V.; True, R. A.; Schoepp, D. D.;
Leander, J. D.; Lodge, D. Bioorg. Med. Chem. Lett. 1993,
3, 95–99.
Acknowledgments
11. Lenda, F.; Guenoun, F.; Tazi, B.; Ben larbi, N.;
Martinez, J.; Lamaty, F. Tetrahedron Lett. 2004, 45,
8905–8907.
We thank the CNRS, the MENRT and the Agence
Universitaire de la Francophonie for financial support.
12. For a review, see: Ma, D. Bioorg. Med. Chem. 1999, 27,
20.
13. Orstein, P. L.; Schoepp, D. D.; Arnold, M. B.; Leander, J.
D.; Lodge, D.; Paschal, J. W.; Elzey, T. J. Med. Chem.
1991, 34, 90–97.
References and notes
1. Rutjes, F. P. J. T.; Wolf, L. B.; Schoemaker, H. E. J.
Chem. Soc., Perkin Trans. 1 2000, 4197–4212.
14. For a similar approach with a derivative of adipic acid, see
Refs. 11 and 28.