N. R. Madadi et al. / Bioorg. Med. Chem. Lett. 23 (2013) 2019–2021
2021
Table 1
abuse, depression, schizophrenia, inflammation, chronic pain,
obesity, osteoporosis and cancer.22
Ki values for (Z)-2-(N-benzylindol-3-ylmethylene) quinuclidin-3-ones (7–13) at CB1
and CB2 receptors
Compound
Ki (nM)
Acknowledgements
CB1
CB2
We are grateful to NCI/NIH (Grant number CA 140409) and to
the Arkansas Research Alliance (ARA) for financial support
7
8
9
10
11
12
13
135 44.1
9.23 0.64
31.7 9.25
629 201
55.3 8.89
953 162
85.7 15.9
11.7 5.55
1.33 0.45
20.3 7.43
333 157
114 36.2
588 237
2.50 0.49
References and notes
1. (a) Porter, A. C.; Felder, C. C. Pharmacol. Ther. 2001, 90, 45; (b) Williamson, E.
M.; Evans, F. J. Drugs 2000, 60, 1303; (c) Hollister, L. E. Pharmacol. Rev. 1986, 38,
1.
2. Matsuda, L. A.; Lolait, S. J.; Brownstein, M. J.; Young, A. C.; Bonner, T. I. Nature
1990, 346, 561–564.
3. Munro, S.; Thomas, K. L.; Abu-Shaar, M. Nature 1993, 365, 61.
4. Fernandez, R. J.; Romero, J.; Velasco, G.; Tolón, R. M.; Ramos, J. A.; Guzmán, M.
Trends Pharmacol. Sci. 2007, 28, 39.
5. Atwood, B. K.; Mackie, K. Br. J. Pharmacol. 2010, 160, 467.
6. Pertwee, R. G.; Howlett, A. C.; Abood, M. E.; Alexander, S. P.; Di Marzo, V.;
Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam,
R.; Ross, R. A. Pharmacol. Rev. 2010, 62, 588.
7. Guzman, M.; Sanchez, C.; Galve-Roperh, I. Pharmacol. Ther. 2002, 95, 175.
8. Mimeault, M.; Pommery, N.; Wattez, N.; Bailly, C.; Henichart, J. P. Prostate 2003,
56, 1.
Table 2
Effects of simple and p-chloro substituted N-benzyl indole quinuclidin-3-ol analogs
(14 and 15) the quinuclidin-3-one oxime analogs (16 and 17) on binding affinity
Compound
Ki (nM)
CB1
CB2
14
15
16
17
540 64.2
85.3 42.5
357 52.2
95.7 2.03
55.3 3.10
113 2.03
68.6 7.27
107 8.75
9. Galve, R. I.; Sanchez, C.; Cortes, M. L.; Gomez del, P. T.; Izquierdo, M.; Guzman,
M. Nat. Med. 2000, 6, 313.
10. Dambra, T. E.; Estep, K. G.; Bell, M. R.; Eissenstat, M. A.; Josef, K. A.; Ward, S. J.;
Haycock, D. A.; Baizman, E. R.; Casiano, F. M.; Beglin, N. C.; Chippari, S. M.;
Grego, J. D.; Kullnig, R. K.; Daley, G. T. J. Med. Chem. 1992, 35, 124.
11. Jenny, L. W.; Rene, E. G. J.; Mark, C. G.; Anu, M.; Raj, K. R.; Billy, R. M. J.
Pharmacol. Exp. Ther. 2001, 296, 1013.
12. Rinaldi-Carmona, M.; Barth, F.; Heaulme, M.; Shire, D.; Calandra, B.; Congy, C.;
Artinez, S.; Maruani, J.; Neliat, G.; Caput, D.; Ferrarab, P.; Soubrie, P.; Breliere, J.
C.; Fur, L. G. FEBS Lett. 1994, 350, 240.
compared to CB1R. Compound 13, which contains a COOCH3 moi-
ety at the indolic 6-position, was a potent CB2 receptor ligand and
exhibited 34-fold selectivity for CB2R (Ki = 2.50 nM) when com-
pared to CB1R (Ki = 85.7 nM) (Table 1). The N-4-fluorobenzyl ana-
logue 8 displays high affinity for both CB1 (Ki = 9.23 nM) and CB2
receptors (Ki = 1.33 nM), but was less selective for the CB2 receptor
than compound 13.
13. Compton, D. R.; Aceto, M. D.; Lowe, J.; Martin, B. R. J. Pharmacol. Exp. Ther. 1996,
277, 586.
14. Stephen, T. W.; Ping, C.; John, H., Jr.; Shuqun, L.; Derek, J. N.; Chennagiri, R. P.;
Steven, S.; Hong Wu, J. S.; Tokarski, X. C.; Kathleen, M. G.; Peter, A. K.; Kim, W.
M.; Vina, P.; David, J. S.; Lori, A.; Turk, G. Y.; Katerina, L. J. Med. Chem. 2003, 46,
2110.
15. Yuji, M.; Hirokazu, K.; Hisao, H.; Yoshinori, O.; Takeshi, H.; Fusako, N. U.S.
Patent 0,053,912, A1, 2011.
16. Sonar, V. N.; Reddy, Y. T.; Sekhar, K. R.; Sowmya, S.; Freeman, M. L.; Crooks, P. A.
Bioorg. Med. Chem. Lett. 2007, 17, 6821.
17. Narsimha, R. P.; Reddy, Y. T.; Sean, P.; Crooks, P. A. Acta Crystallogr., Sect. E 2011,
E67, o735.
The (Z)-( )-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-ols
(14 and 15) and (2Z,3E)-2-((1-benzyl-1H-indol-3-yl) methylene)-
quinuclidin-3-one oximes (16 and 17) exhibited lower affinity for
both CB1 and CB2 receptors when compared to their parent com-
pounds (7 and 9) and were generally less selective. The overall
affinities of quinuclidin-3-ol and quinuclidin-3-one oxime deriva-
tives for CB1R and CB2R were reduced when compared to those
of the corresponding quinuclidin-3-one derivatives (Table 2).
In summary N-benzylindolequinuclidinone (IQD) analogs have
been identified as a novel class of cannabinoid ligands. These IQDs
were evaluated against the two cannabinoid receptor subtypes,
CB1 and CB2. Compounds 8 and 13 exhibited high affinity for
CB2 receptors with Ki values of 1.33 and 2.50 nM, respectively,
and had lower affinities for the CB1 receptor (Ki values of 9.23
and 85.7 nM, respectively). Compound 13 had the highest selectiv-
ity of all the compounds examined, and represents a potent can-
nabinoid ligand with 34-times greater selectivity for CB2R over
CB1R. These findings are significant for future drug development,
given recent reports demonstrating beneficial use of cannabinoid
ligands in a wide variety of human disease states including drug
18. Analytical data and yields for the most active compounds: (8): 1H NMR (300 MHz,
CDCl3): d 2.01–2.03 (m, 4H), 2.62 (p, J = 3.0 Hz, 1H), 2.92–3.02 (m, 2H), 3.08–
3.18 (m, 2H), 5.34 (s, 2H), 6.96–7.25 (m, 7H), 7.46 (s, 1H), 7.87–7.90 (m, 1H),
8.36 (s, 1H); 13C NMR (75 MHz, CDCl3): d 26.4, 40.5, 47.5, 50.0, 110.1, 111.4,
115.6, 118.8, 121.1, 121.8, 122.8, 124.3, 127.7, 128.27, 130.7, 134.3, 135.5,
135.8, 135.9, 185.2; yield: 87%: (13): 1H NMR (300 MHz, CDCl3): d 1.98–2.04
(m, 4H), 2.62–2.63 (p, J = 2.7 Hz, 1H), 2.91–3.01 (m, 2H), 3.08–3.17 (m, 2H),
3.90 (s, 3H, OCH3), 5.44 (s, 2H), 7.10–7.13 (m, 2H), 7.28–7.43 (m, 3H), 7.43 (s,
1H), 7.81–7.89 (m, 2H), 8.03 (s, 1H), 8.51 (s, 1H); 13C NMR (75 MHz, CDCl3): d
26.3, 40.4, 47.5, 50.6, 52.0, 110.6, 112.4, 117.1, 118.7, 122.0, 124.4, 126.5, 127.9,
128.9, 132.2, 135.5, 136.2, 136.9, 141.3, 167.7, 205.3; yield: 91%.
19. Sonar, V. N.; Parkin, S.; Crooks, P. A. J. Chem. Crystallogr. 2004, 34(4), 239.
20. Narsimha, R. P.; Purushotham, R. P.; Sean, P.; Crooks, P. A. Acta Crystallogr., Sect.
E 2012, E68, o3111.
21. Cheng, Y.; Prusoff, W. Biochem. Pharmacol. 1973, 22, 3099.
22. Pertwee, R. G. Br. J. Pharmacol. 2009, 156, 397.