M. D. Farris, C. De Meo / Tetrahedron Letters 48 (2007) 1225–1227
1227
2. Biology of Sialic Acids; Rosenberg, A., Ed.; Plenum Press:
New York, London, 1995.
3. Boons, G. J.; Demchenko, A. V. Chem. Rev. 2000, 100,
4539–4565.
4. Boons, G. J.; Demchenko, A. V. In Carbohydrate-Based
Drug Discovery; Wong, C.-H., Ed.; Wiley, 2003; pp 55–
102.
5. Ress, D. K.; Linhardt, R. J. Curr. Org. Synth. 2004, 1,
31–46.
6. De Meo, C.; Parker, O. Tetrahedron: Asymmetry 2005, 16,
303–307.
7. Meijer, A.; Ellervik, U. J. Org. Chem. 2004, 69, 6249–
6256.
HO
HO
H2N
OH
O
-
CO2
AcO
AcO
HN
OAc
COOMe
a
SPh
HO
20
O
SPh
O
b
HO
HO
HN
2
OH
O
O
COOMe
SPh
MeO2C
HO
21
Scheme 2. Reagents and conditions: (a) Ba(OH)2, EtOH, 65 °C, 16 h,
95%; (b) MeOH, MeONa, 2 h, 90%.
8. Cai, S.; Biao, Y. Org. Lett. 2003, 5, 3827–3830.
9. Haberman, J. M.; Gin, D. Y. Org. Lett. 2001, 3, 1665–
1668.
10. Ishiwata, A.; Ito, Y. Synlett 2003, 9, 1339–1343.
11. Ando, H.; Koike, Y.; Koizumi, S.; Ishida, H.; Kiso, M.
Angew. Chem., Int. Ed. 2005, 44, 2–7.
12. De Meo, C. ACS Symp. Ser., in press.
13. Crich, D.; Vinod, A. U. Org. Lett. 2003, 5, 1297–1300.
14. Crich, D.; Vinod, A. U. J. Org. Chem. 2005, 70, 1291–
1296.
AcO
AcO
HN
OAc
O
HO
HO
AcHN
OH
O
COOMe
-
CO2
a,b
O
O
O
O
O
O
HO
O
O
O
O
22
O
5
O
O
O
Scheme 3. Reagents and conditions: (a) Ba(OH)2, EtOH, 65 °C, 16 h,
95%; (b) Ac2O, MeOH, 5 h, 90%.
15. Benakli, K.; Zha, C.; Kerns, R. J. J. Am. Chem. Soc. 2001,
123, 9461–9462.
16. Kerns, R. J.; Zha, C.; Benakli, K.; Liang, Y.-Z. Tetra-
hedron Lett. 2003, 44, 8069–8072.
17. Wei, P.; Kerns, R. J. Tetrahedron Lett. 2005, 46, 6901–
6905; Wei, P.; Kerns, R. J. J. Org. Chem. 2005, 70, 4195.
18. Boysen, M.; Gemma, E.; Lahmann, M.; Oscarson, S.
Chem. Commun. 2005, 3044–3046.
anomeric configurations were assigned using empirical
rules.3 Thus, the most useful characteristic parameters
to undoubtedly assign anomeric configuration were the
chemical shift of H-30eq (a-glycosides: d 3.10–2.78,
b-glycosides: d 2.60–2.50), the value Dd{H-90a-H-90b}
(a-glycosides:
d 0.1–0.3 ppm, b-glycosides: d 0.6–
19. During the preparation of this manuscript, Takahashi
et al. reported the use of oxazolidinone donor and
acceptor for the synthesis of a(2–8)-linked sialosides, see:
Tanaka, H.; Nishiura, Y.; Takahashi, T. J. Am. Chem.
Soc. 2006, 128, 7124–7125.
0
0
1.0 ppm) and the value of JH-7 ;H-8 coupling constant
(a-glycosides: 6.2–9.6 Hz, b-glycosides: 1.6–3.0 Hz).23
In conclusion, the introduction of 4,5-O,N-oxazolidi-
none protecting group creates a donor whose reactivity
can be in general considered higher than that of
N-acetylacetamido but slightly lower than trifluro-
acetamido derivatives. It has also been demonstrated
that the oxazolidinone fused ring enhances stereoselec-
tivity in glycosylation reactions with a large number of
glycosyl acceptors, although the anomeric selectivity is
also dependent on the nature of acceptor. Thus, high
yields and stereoselectivities can be achieved for the
synthesis of a(2,6) linkages, while an excellent stereo-
selectivity in modest yields have been reported for the
synthesis of a(2,3) linkages. The oxazolidinone ring
can also be removed under basic conditions to afford
the corresponding deprotected amine, which can be
further functionalized.
20. Methyl [2-thiophenyl 7,8,9-tri-O-acetyl-4,5-O,N-carbonyl-
3,5-dideoxy-D-glycero-a-D-galacto-non-2-ulopyranoside]-
onate (2): Rf 0.50 (ethyl acetate/toluene, 1/1 v/v);
26
½aꢁD ꢀ4.90 (c 1, CHCl3); 1H NMR (300 MHz, CDCl3):
d 7.11–7.43 (m, 5H, aromatic), 5.23–5.32 (m, 2H, H-8,
NH), 5.03 (dd, 1H, J7,8 = 9.6 Hz, H-7), 4.33 (s, 2H, H-9),
3.97 (dd, 1H, J6,7 = 1.5 Hz, H-6), 3.8–3.90 (m, 1H, H-4),
3.47 (s, 3H, OCH3), 3.08 (dd, 1H, J3e,4 = 3.6 Hz,
J3e,3a = 10.4 Hz, H-3e), 2.92 (t, 1H, J5,6 = 9.9 Hz, H-5),
2.08 (dd, 1H, H-3a), 2.13, 1.99, (2s, 6H, OCOCH3). HR-
FAB MS [M+Na]+ calcd for C23H27NaNO11S 548.1203,
found 548.1198.
21. Crich, D.; Wenju, L. Org. Lett. 2006, 8, 959–962.
22. De Meo, C.; Demchenko, A. V.; Boons, G. J. Aust. J.
Chem. 2002, 55, 131–134.
23. Selected 1H NMR data for compounds 5a and 14:
O-[Methyl (7,8,9-tri-O-acetyl-4,5-O,N-carbonyl-3,5-dideoxy-
D-glycero-a-D-galacto-non-2-ulopyranosyl)onate]-(2!6)-
1,2:3,4-di-O-isopropylidene-a-D-galactopyranose (5a). 1H
Acknowledgment
0
0
NMR (300 MHz, CDCl3): d 5.11 (dd, 1H, J7 ;8 ¼ 9:7 Hz,
H-70), 4.60 (dd, 1H, J8 ;9 a ¼ 2:7; J9 a;9 b ¼ 9:5 Hz, H-90a),
4.35-4.23 (m, 4H, H-90b), 2.89 (dd, 1H, J3e,4 = 3.4 Hz,
J3e,3a = 12.8 Hz, H-30eq), 2.09 (dd, 1H, H-30ax) ppm.
Methyl [2-(trimethylsilyl)ethyl 7,8,9-tri-O-acetyl-4,5-O,
N-carbonyl-3,5-dideoxy-D-glycero-a-D-galacto-non-2-ulo-
0
0
0
0
We thank Research Corporation-Cottrell College
Science Award for support of this work.
1
pyranoside]onate (14). H NMR (300 MHz, CDCl3): 5.15
References and notes
(dd, 1H, J7,8 = 10.0 Hz, H-7), 4.45–4.38 (m, 2H, H-9), 2.90
(dd, 1H, J3e,4 = 3.6 Hz, J3e,3a = 0.4 Hz, H-3e), 2.05 (dd,
1H, H-3a) ppm.
1. Schauer, R. Sialic Acids: Chemistry, Metabolism and
Function; Springer-Verlag: Wien–New York, 1982; Vol. 10.