B.-C. Hong et al. / Tetrahedron Letters 48 (2007) 1121–1125
1125
Shoji, M. Angew. Chem., Int. Ed. 2006, 45, 958; (d) Enders,
D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem.,
Int. Ed. 2005, 44, 4079–4083; (e) Kunz, R. K.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2005, 127, 3240; (f) Steiner, D.
D.; Mase, N.; Barbas, C. F., III. Angew. Chem., Int. Ed.
2005, 44, 3706; (g) Ramachary, D. B.; Chowdari, N. S.;
Barbas, C. F., III. Angew. Chem., Int. Ed. 2003, 42, 4233;
(h) Cheong, P. H.-Y.; Zhang, H.; Thayumanavan, R.;
Tanaka, F.; Houk, K. N.; Barbas, Carlos F., III. Org.
Lett. 2006, 8, 811; (i) Robichaud, J.; Tremblay, F. Org.
Lett. 2006, 8, 597; (j) Aggarwal, V. K.; Lopin, C.;
Sandrinelli, F. J. Am. Chem. Soc. 2003, 125, 7596; (k)
Dambruoso, P.; Massi, A.; Dondoni, A. Org. Lett. 2005,
7, 4657; (l) Mitchell, C. E. T.; Brenner, S. E.; Ley, S. V.
Chem. Commun. 2005, 5346; (m) Kumarn, S.; Shaw, D.
M.; Ley, S. V. Chem. Commun. 2006, 3211; (n) Andreae,
M. R. M.; Davis, A. P. Tetrahedron: Asymmetry 2005, 16,
2487; (o) Sunden, H.; Dahlin, N.; Ibrahem, I.; Adolfsson,
H.; Cordova, A. Tetrahedron Lett. 2005, 46, 3385; (p)
Berkessel, A.; Koch, B.; Lex, J. Adv. Synth. Cat. 2004, 346,
1141; (q) Ramachary, D. B.; Chowdari, N. S.; Barbas, C.
F., III. Angew. Chem., Int. Ed. 2003, 42, 4233.
C. F. Acc. Chem. Res. 2004, 37, 580; (c) Christoffers, J.;
Baro, A. Angew. Chem., Int. Ed. 2003, 42, 1688; (d)
Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem.
2002, 1877; (e) Krause, N.; Hoffmann-Roder, A. Synthesis
2001, 171.
21. For recent reviews, see: (a) Marques, M. M. B. Angew.
Chem., Int. Ed. 2006, 45, 348; (b) Cordova, A. Acc. Chem.
Res. 2004, 37, 102; (c) Arend, M.; Westermann, B.; Risch,
N. . Angew. Chem., Int. Ed. 1998, 37, 1045; (d) Bur, S. K.;
Martin, S. F. Tetrahedron 2001, 57, 3221.
22. (a) Abe, N.; Arakawa, T.; Hirota, A. Chem. Commun.
2002, 204; (b) von Nussbaum, F. Angew. Chem., Int. Ed.
2003, 42, 3068; (c) Hale, K. J.; Dimopoulos, P.; Cheung,
M. L. F.; Frigerio, M.; Steed, J. W.; Levett, P. C. Org.
Lett. 2002, 4, 897; (d) Rohr, J. J. Chem. Soc., Chem.
Commun. 1989, 492.
23. Acrolein is released into the environment as a product of
fermentation and ripening processes. It is a byproduct of
lipid peroxidation and was isolated from the wood of oak
trees. For references and other examples, see: (a) Slooff,
W.; Bont, P. F. H.; Janus, J. A.; Pronk, M. E. J.; Ros, J. P.
M. National Institute of Public Health and Environmental
Protection, Bilthoven, Report No. 601014001, 1994,
Update of the exploratory report: acrolein; (b) Winter,
M.; Willhalm, B. Helv. Chim. Acta. 1964, 47, 1215; (c)
Reinder, S.; Spiritusind, Z. Chem. Zentralbl. 1941, 63,
3155; (d) Distillers Co.; German Patent, DE 831,838;
1950.
24. (a) Birch, S. F.; Norris, W. S. G. P. J. Chem. Soc. 1926,
2545; (b) Badger, G. M.; Donnelly, J. K.; Spotswood, T.
M. Aust. J. Chem. 1963, 392; (c) Pictet, A.; Bouvier, M.
Chem. Ber. 1915, 48, 926; (d) Salbut, P. D.; Wielopolski,
A. . Rocz. Chem. 1970, 44, 585; (e) Diallo, B.; Vanhaelen-
Fastre, R.; Vanhaelen, W. Phytochemistry 1991, 30, 4153;
(f) Addae-Mensah, I.; Waibel, R.; Achenbach, H. Liebigs
Ann. Chem. 1985, 1284; (g) Jong, T.-T.; Jean, M.-Y. J.
Chin. Chem. Soc. 1993, 40, 399; (h) Misra, T. N.; Singh, R.
S.; Pandey, H. S.; Kohli, Y. P.; Pandey, R. P. Indian J.
Chem. Sect. B 1997, 36, 203.
17. For promising examples of organocatalysis mediated by
pyrrolidine and acetic acid, see: (a) McNally, A.; Evans,
B.; Gaunt, M. J. Angew. Chem., Int. Ed. 2006, 45, 2116; (b)
Erkkilae, A.; Pihko, P. M. J. Org. Chem. 2006, 71, 2538;
(c) Li, D.-P.; Guo, Y.-C.; Ding, Y.; Xiao, W.-J. Chem.
Commun. 2006, 799; (d) Ramachary, D. B.; Ramakumar,
K.; Kishor, M. Tetrahedron Lett. 2005, 46, 7037; (e) Ji, C.;
Peng, Y.; Huang, C.; Wang, N.; Jiang, Y. Synlett 2005,
986; (f) Mase, N.; Tanaka, F.; Barbas, C. F. Org. Lett.
2003, 5, 4369.
18. For recent examples in bifunctional organocatalysis, see:
(a) Sohtome, Y.; Hashimoto, Y.; Nagasawa, K. Eur. J.
Org. Chem. 2006, 2894; (b) Cao, C.-L.; Ye, M.-C.; Sun,
X.-L.; Tang, Y. Org. Lett. 2006, 8, 2901; (c) Liu, T.-Y.;
Long, J.; Li, B.-J.; Jiang, L.; Li, Rui; Wu, Y.; Ding, L.-S.;
Chen, Y.-C. Org. Biomol. Chem. 2006, 4, 2097; (d) Pratt,
R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R.
M.; Hedrick, J. L. J. Am. Chem. Soc. 2006, 128, 4556; (e)
Sohtome, Y.; Hashimoto, Y.; Nagasawa, K. Adv. Syn.
Cat. 2005, 347, 1643; (f) Hoashi, Y.; Okino, T.; Takemoto,
Y. Angew. Chem., Int. Ed. 2005, 44, 4032; (g) Lattanzi, A.
Org. Lett. 2005, 7, 2579; (h) Matsui, K.; Takizawa, S.;
Sasai, H. J. Am. Chem. Soc. 2005, 127, 3680; (i) Berkessel,
A.; Cleemann, F.; Mukherjee, S.; Mueller, T. N.; Lex, J.
Angew. Chem., Int. Ed. 2005, 44, 807; (j) Okino, T.;
Nakamura, S.; Furukawa, T.; Takemoto, Y. Org. Lett.
2004, 6, 625; (k) Mase, N.; Tanaka, F.; Barbas, C. F., III.
Org. Lett. 2003, 5, 4369.
19. For recent examples in Brønsted acid organocatalysis, see:
(a) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Cat.
2006, 348, 999; (b) Rueping, M.; Antonchick, A. P.;
Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683; (c)
Terada, M.; Machioka, K.; Sorimachi, K. Angew. Chem.,
Int. Ed. 2006, 45, 2254; (d) Hoffmann, S.; Seayad, A. M.;
List, B. Angew. Chem., Int. Ed. 2005, 44, 7424; (e)
Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.;
Bolte, M. Org. Lett. 2005, 7, 3781; (f) Yamamoto, H.;
Futatsugi, K. Angew. Chem., Int. Ed. 2005, 44, 1924.
20. For recent reviews, see: (a) Xu, L.-W.; Xia, C.-G. Eur. J.
Org. Chem. 2005, 633; (b) Notz, W.; Tanaka, F.; Barbas,
25. Dialdehyde 1 is stable during prolonged storage at
ambient temperature, and is inert to some aromatization
agents tried, for example, DDQ.
26. Bae, B. H.; Im, K. S.; Choi, W. C.; Hong, J.; Lee, C.-O.;
Choi, J. S.; Son, B. W.; Song, J.-I.; Jung, J. H. J. Nat.
Prod. 2000, 63, 1511.
27. Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett.
2004, 6, 3217.
28. (a) Kirmse, W. Angew. Chem., Int. Ed. 1997, 36, 1164–
1170; (b) Heydt, H. Sci. Synth. 2004, 27, 843; (c) Brown,
D. G.; Velthuisen, E. J.; Commerford, J. R.; Brisbois, R.
G.; Hoye, T. R. J. Org. Chem. 1996, 61, 2540.
29. (a) Ohira, S. Synth. Commun. 1989, 19, 561; (b) Muller, S.;
¨
Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996,
512.
30. The 1H and 13C spectra of 2 were identical with the spectra
of natural montiporyne F, personal communication with
Professor Jee H. Jung, Pusan National University, Korea.
The optical rotation and absolute stereochemistry of
natural montiporyne F were unknown due to the limited
material isolated.
31. Reaction of crotonaldehyde and proline led to the
formation of [3+3] cycloaddition adducts, see Ref. 9a.