Journal of the American Chemical Society
Page 4 of 5
1
2
Chem. 2013, 78, 4341. (b) He, Q.; Williams, N. J.; Oh, J. H.; Lynch, V.
M.; Kim, S. K.; Moyer, B. A.; Sessler, J. L. Selective Solid–Liquid and
Liquid–Liquid Extraction of Lithium Chloride Using Strapped
Calix[4]pyrroles. Angew. Chem. Int. Ed. 2018, 57, 11924.
(14) (a) Gale, P. A. From Anion Receptors to Transporters Acc. Chem.
Res. 2011, 44, 216. (b) Ko, S.-K.; Kim, S. K.; Share, A.; Lynch, V. M.;
Park, J.; Namkung, W.; Van Rossom, W.; Busschaert, N.; Gale, P. A.;
Sessler, J. L. Synthetic Ion Transporters Can Induce Apoptosis by
Facilitating Chloride Anion Transport into Cells. Nat. Chem. 2014, 6, 885.
(15) Xu, L.; Liu, L.; Liu, F.; Cai, H.; Zhang, W. Porphyrin-Containing
Amphiphilic Block Copolymers for Photodynamic Therapy. Polym.
Chem. 2015, 6, 2945.
(16) Marcus, Y. Thermodynamics of Solvation of Ions. Part 5.—Gibbs
Free Energy of Hydration at 298.15 K. J. Chem. Soc., Faraday Trans.
1991, 87, 2995.
(17) Extraction efficiencies are reported as the percent (%) of extractant
populated with various salts after contacting with a corresponding
aqueous salt solution.
3
4
5
6
7
8
9
REFERENCES
(1) (a) Ferru, G.; Reinhart, B.; Bera, M. K.; Olvera de la Cruz, M.; Qiao,
B.; Ellis, R. J. The Lanthanide Contraction beyond Coordination.
Chemistry Chem. Eur. J. 2016, 22, 6899. (b) Abney, C. W.; Do, C.; Luo,
H.; Wright, J.; He, L.; Dai, S. Controlling the Intermediate Structure of an
Ionic Liquid for f-Block Element Separations. J. Phys. Chem. Lett. 2017,
8, 2049. (c) Brigham, D. M.; Ivanov, A. S.; Moyer, B. A.; Delmau, L. H.;
Bryantsev, V. S.; Ellis, R. J. Trefoil-Shaped Outer-Sphere Ion Clusters
Mediate Lanthanide(III) Ion Transport with Diglycolamide Ligands. J.
Am. Chem. Soc. 2017, 139, 17350. (d) Baldwin, A. G.; Ivanov, A. S.;
Williams, N. J.; Ellis, R. J.; Moyer, B. A.; Bryantsev, V. S.; Shafer, J. C.
Outer-Sphere Water Clusters Tune the Lanthanide Selectivity of
Diglycolamides. ACS Cent. Sci. 2018, 4, 739.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) For a comprehensive overview see: Bruns, C. J.; Stoddart, J. F. The
Nature of the Mechanical Bond: From Molecules to Machines; John
Wiley & Sons, Inc.: Hoboken, NJ, Wi 2016.
(3) Hale, L. V. A.; Szymczak, N. K. Hydrogen Transfer Catalysis
beyond the Primary Coordination Sphere. ACS Catal. 2018, 8, 6446.
(4) (a) Park, J. S.; Yoon, K. Y.; Kim, D. S.; Lynch, V. M.; Bielawski, C.
W.; Johnston, K. P.; Sessler, J. L. Chemoresponsive Alternating
Supramolecular Copolymers Created from Heterocomplementary
Calix[4]pyrroles. Proc. Natl. Acad. Sci. 2011, 108, 20913. (b) Kaminker,
R.; de Hatten, X.; Lahav, M.; Lupo, F.; Gulino, A.; Evmenenko, G.; Dutta,
P.; Browne, C.; Nitschke, J. R.; van der Boom, M. E. Assembly of
Surface-Confined Homochiral Helicates: Chiral Discrimination of DOPA
and Unidirectional Charge Transfer. J. Am. Chem. Soc. 2013, 135, 17052.
(c) Silver, E. S.; Rambo, B. M.; Bielawski, C. W.; Sessler, J. L. Reversible
Anion-Induced Cross-Linking of Well-Defined Calix[4]pyrrole-
Containing Copolymers. J. Am. Chem. Soc. 2014, 136, 2252. (d) Ma, X.;
Tian, H. Stimuli-Responsive Supramolecular Polymers in Aqueous
Solution. Acc. Chem. Res. 2014, 47, 1971.
(5) (a) Williams, N. J.; Seipp, C. A.; Garrabrant, K. A.; Custelcean, R.;
Holguin, E.; Keum, J. K.; Ellis, R. J.; Moyer, B. A. Surprisingly Selective
Sulfate Extraction by A Simple Monofunctional Di(imino)guanidinium
Micelle-Forming Anion Receptor. Chem. Commun. 2018, 54, 10048. (b)
Chi, X.; Peters, G. M.; Hammel, F.; Brockman, C.; Sessler, J. L.
Molecular Recognition Under Interfacial Conditions: Calix[4]pyrrole-
Based Cross-linkable Micelles for Ion Pair Extraction. J. Am. Chem. Soc.
2017, 139, 9124.
(6) (a) Li, Y.; Du, W.; Sun, G.; Wooley, K. L. pH-Responsive Shell
Cross-Linked Nanoparticles with Hydrolytically Labile Cross-Links.
Macromolecules, 2008, 41, 6605. (b) Lu, Y.; Yu, G.; Wang, W.-J.; Ren,
Q.; Li, B.-G.; Zhu, S. Design and Synthesis of Thermoresponsive Ionic
Liquid Polymer in Acetonitrile as a Reusable Extractant for Separation of
Tocopherol Homologues. Macromolecules, 2015, 48, 915.
(7) (a) Aydogan, A.; Coady, D. J.; Lynch, V. M.; Akar, A.; Marquez,
M.; Bielawski, C. W.; Sessler, J. L. Poly(methyl methacrylate)s with
Pendant Calixpyrroles: Polymeric Extractants for Halide Anion Salts.
Chem. Commun. 2008, 1455. (b) Aydogan, A.; Coady, D. J.; Kim, S. K.;
Akar, A.; Bielawski, C. W.; Marquez, M.; Sessler, J. L. Poly(methyl
methacrylate)s with Pendant Calixpyrroles and Crown Ethers: Polymeric
Extractants for Potassium Halides. Angew. Chem., Int. Ed. 2008, 47,
9648.ꢀ
(8) Romanski, J.; Piatek, P. Tuning The Binding Properties of A New
Heteroditopic Salt Receptor Through Embedding in A Polymeric System.
Chem. Commun. 2012, 48, 11346.
(9) McDonald, K.P.; Qiao, B.; Twum, E. B.; Lee, S.; Gamache, P. J.;
Chen, C.-H.; Yi, Y.; Flood, A. H. Quantifying Chloride Binding and Salt
Extraction with Poly(Methyl Methacrylate) Copolymers Bearing Aryl-
Triazoles as Anion Receptor Side Chains. Chem. Commun. 2014, 50,
13285.
(10) (a) Kim, S. K.; Sessler, J. L. Ion Pair Receptors. Chem. Soc. Rev.
2010, 39, 3784. (b) Ciardi, M.; Galán, A.; Ballester, P. Tetra-phosphonate
Calix[4]pyrrole Cavitands as Multitopic Receptors for the Recognition of
Ion Pairs. J. Am. Chem. Soc. 2015, 137, 2047.
(11) Kim, S. K.; Sessler, J. L. Calix[4]pyrrole-Based Ion Pair Receptors.
Acc. Chem. Res. 2014, 47, 2525.
(12) McConnell, A. J.; Beer, P. D. Heteroditopic Receptors for Ion-Pair
Recognition. Angew. Chem. Int. Ed. 2012, 51, 5052.
(13) (a) Romański, J.; Piątek, P. Selective Ammonium Nitrate
Recognition by a Heteroditopic Macrotricyclic Ion-Pair Receptor. J. Org.
4
ACS Paragon Plus Environment