ORGANIC
LETTERS
2011
Vol. 13, No. 8
1908–1911
Mild and Selective Vanadium-Catalyzed
Oxidation of Benzylic, Allylic, and
Propargylic Alcohols Using Air
Susan K. Hanson,* Ruilian Wu, and L. A. “Pete” Silks
Chemistry and Biosciences Divisions, Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, United States
Received January 10, 2011
ABSTRACT
Transition metal-catalyzed aerobic alcohol oxidation is an attractive method for the synthesis of carbonyl compounds, but most catalytic systems
feature precious metals and require pure oxygen. The vanadium complex (HQ)2VV(O)(OiPr) (2 mol %, HQ = 8-quinolinate) and NEt3 (10 mol %)
catalyze the oxidation of benzylic, allylic, and propargylic alcohols with air. The catalyst can be easily prepared under air using commercially
available reagents and is effective for a wide range of primary and secondary alcohols.
The oxidation of alcohols to afford carbonyl compounds
is a key reaction in synthetic organic chemistry. Recent
years have seen major progress in the development of
catalytic aerobic alcohol oxidation, which offers economic
and environmental benefits over traditional stoichiometric
oxidants.1 Despite these advances, many reported systems
feature precious metal catalysts (Pd, Ru, Ir) and use
oxygen pressures of 1 atm or more.2-4 Due to issues of
scarcity and cost, there is considerable interest in replacing
precious metal catalysts with earth-abundant metals.5 Using
air instead of pure oxygen is also advantageous,6 reducing
the safety hazard associated with heating organic solvents
under elevated O2 pressures.
Vanadium complexes have shown potential as base-
metal catalysts for aerobic alcohol oxidation, in some cases
proving effective for substrates where palladium catalysts
display limited activity. For instance, vanadium is known
to catalyze the selective aerobic oxidation of propargylic
(1) (a) Schultz, M. J.; Sigman, M. S. Tetrahedron 2006, 62, 8227–
8241. (b) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005,
105, 2329–2363. (c) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400–
3420.
(2) (a) Schultz, M. J.; Adler, R. S.; Zierkiewicz, W.; Privalov, T.;
Sigman, M. S. J. Am. Chem. Soc. 2005, 127, 8499–8507. (b) Steinhoff,
B. A.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2004, 126, 11268–
11278. (c) ten Brink, G. J.; Arends, I. W. C. E.; Sheldon, R. A. Science
2000, 287, 1636–1639. (d) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura,
S. J. Org. Chem. 1999, 64, 6750–6755.
(3) (a) Johnston, E. V.; Karlsson, E. A.; Tran, L. H.; Akermark, B.;
Backvall, J. E. Eur. J. Org. Chem. 2010, 1971–1976. (b) Nikaidou, F.;
Ushiyama, H.; Yamaguchi, K.; Yamashita, K.; Mizuno, N. J. Phys.
Chem. C 2010, 114, 10873–10880. (c) Mizoguchi, H.; Uchida, T.; Ishida,
K.; Katsuki, T. Tetrahedron Lett. 2009, 50, 3432–3435. (d) Wolfson, A.;
Wuyts, S.; De Vos, D. E.; Vankelecom, I. F. J.; Jacobs, P. A. Tetrahedron
Lett. 2002, 43, 8107–8110.
(4) (a) Arita, S.; Koike, T.; Kayaki, Y.; Ikariya, T. Angew. Chem., Int.
Ed. 2008, 47, 2447–2449. (b) Jiang, B.; Feng, Y.; Ison, E. A. J. Am. Chem.
Soc. 2008, 130, 14462–14464. (c) Gabrielsson, A.; van Leeuwen, P.;
Kaim, W. Chem. Commun. 2006, 4926–4927.
(5) (a) Michel, C.; Belanzoni, P.; Gamez, P.; Reedijk, J.; Baerends,
E. J. Inorg. Chem. 2009, 48, 11909–11920. (b) Jiang, N.; Ragauskas, A. J.
J. Org. Chem. 2006, 71, 7087–7090. (c) Gamez, P.; Arends, I. W. C. E.;
Sheldon, R. A.; Reedijk, J. Adv. Synth. Catal. 2004, 346, 805–811. (d)
Gamez, P.; Arends, I. W. C. E.; Reedijk, J.; Sheldon, R. A. Chem.
Commun. 2003, 2414–2415. (e) Chaudhuri, P.; Hess, M.; Florke, U.;
Wieghardt, K. Angew. Chem., Int. Ed. 1998, 37, 2217–2220. (f) Marko,
I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 1996,
274, 2044–2046.
(6) For selected examples of aerobic oxidation using air, see: (a)
Zahmakiran, M.; Akbayrak, S.; Kodaira, T.; Ozkar, S. Dalton Trans.
2010, 39, 7521–7527. (b) Bailie, D. S.; Clendenning, G. M. A.;
McNamee, L.; Muldoon, M. J. Chem. Commun. 2010, 46, 7238–7240.
(c) Conley, N. R.; Labios, L. A.; Pearson, D. M.; McCrory, C. C. L.;
Waymouth, R. M. Organometallics 2007, 26, 5447–5453. (d) Guan, B.;
Xing, D.; Cai, G.; Wan, X.; Yu, N.; Fang, Z.; Yang, L.; Shi, Z. J. Am.
Chem. Soc. 2005, 127, 18004–18005. (e) Iwasawa, T.; Tokunaga, M.;
Obora, Y.; Tsuji, Y. J. Am. Chem. Soc. 2004, 126, 6554–6555. (f)
Korovchenko, P.; Donze, C.; Gallezot, P.; Besson, M. Catal. Today
2007, 121, 13–21. (g) Hara, T.; Ishikawa, M.; Sawada, J.; Ichikuni, N.;
Shimazu, S. Green Chem. 2009, 11, 2034–2040.
r
10.1021/ol103107v
Published on Web 03/24/2011
2011 American Chemical Society