ORGANIC
LETTERS
2005
Vol. 7, No. 2
211-214
Synthesis of Structurally Diverse and
Defined Bivalent Mannosides on
Saccharide Scaffolding
Manuela Tosin,† Sebastien G. Gouin,† and Paul V. Murphy*
Centre for Synthesis and Chemical Biology, Chemistry Department, Conway Institute
of Biomolecular and Biomedical Research, UniVersity College Dublin,
Belfield, Dublin 4, Ireland
Received October 19, 2004
ABSTRACT
The synthesis of bivalent mannosides by the grafting of
r-D-mannopyranoside onto monosaccharide acceptors and conjugation to terephthalic
acid or phenylenediamine is described. Computational methods were used to predict accessible orientations and distances between the
mannose units.
Cells communicate through complex interaction of carbo-
hydrate polymers with their receptors.1 Such biopolymers
constitute a high-density coding system. Multivalent carbo-
hydrates2,3 form part of this polymer class and are important
in generating high-affinity binding, mediating cell-cell
recognition, adhesion, and modulation of signal transduction.
Synthetic multivalent ligands have proven to be useful in
defining new biological mechanisms.4 Mechanisms of bind-
ing of such ligands to receptors are diverse; for example,
cross-linking of lectins by multivalent ligands5 as well as
chelate effects operate. Opportunities exist for the develop-
ment of therapeutics6 and vaccines.7 Small glycoclusters can
exhibit interesting properties. For example a synthetic com-
pound can be identified, from a series of rigidified multi-
valent ligands, each exposing the same headgroup (lactose),
that exhibits selective blocking of one galectin when evalu-
ated against a panel of galectins.8 This suggests more
generally that detailed three-dimensional structure-activity
relationships of multivalent ligands will be interesting. These
have not been explored to date, although crystal structures
of ligand-receptor complexes are known and relationships
(6) (a) Simanek, E. E.; McGarvey, G. J.; Jablonski, J. A.; Wong, C.-H.
Chem. ReV. 1998, 98, 833 and references cited therein. (b) Mowery, P.;
Yang, Z. Q.; Gordon, E. J.; Dwir, O.; Spencer, G.; Alon, R.; Kiessling, L.
L. Chem. Biol. 2004, 11 725. (c) Kitov, P. I.; Sadowska, J. M.; Mulvey,
G.; Armstrong, G. D.; Ling, H.; Pannu, N. S.; Read, R. J.; Bundle, D. R.
Nature 2000, 403, 669.
(7) (a) Liebe, B.; Kunz, H. Angew. Chem., Int. Ed. Engl. 1997, 36, 618.
(b) Hummel, G.; Schmidt, R. R. Tetrahedron Lett. 1997, 38, 1173. (c)
Ragupathi, G.; Coltart, D. M.; Williams, L. J.; Koide, F.; Kagan, E.; Allen,
J.; Harris, C.; Glunz, P. W.; Livingston, P. O.; Danishefsky, S. J. Proc.
Natl. Acad. Sci. U. S.A. 2002, 99, 13699.
† These authors made an equal contribution.
(1) Gabius, H.-J.; Siebert, H. C.; Andre, S.; Jiminez-Barbero, J.; Rudiger,
H. ChemBioChem 2004, 5, 740.
(2) Lee, Y. V.; Townsend, R. R.; Hardy, M. R.; Lo¨nngren, J.; Arnarp,
J.; Haraldsson, M.; Lo¨nn, H. J. Biol. Chem. 1983, 258, 199.
(3) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem., Int.
Ed. 1998, 37, 2754.
(4) Gestwicki, J. E.; Kiessling, L. L. Nature 2002, 415, 81.
(5) (a) Andre´, S.; Ortega, P. J. C.; Perez, M. A.; Roy, R.; Gabius, H.-J.
Glycobiology 1999, 9, 1253. (b) Brewer, C. F. Biochim. Biophys. Acta 2002,
1572, 255.
(8) (a) Vrasidas, I.; Andre, S.; Valentini, P.; Bock, C.; Lensch, M.;
Kaltner, H.; Liskamp, R. M. J.; Gabius, H.-J.; Pieters, R. J. Org. Biomol.
Chem. 2003, 1, 803-810. (b) Andre´, S.; Liu, B.; Gabius, H.-J.; Roy, R.
Org. Biomol. Chem. 2003, 1, 3909.
10.1021/ol047841l CCC: $30.25
© 2005 American Chemical Society
Published on Web 12/24/2004