H. Iwamoto et al. / Tetrahedron Letters 43 (2002) 8191–8194
8193
Table 1. Binding energies−DG (kJ/mol)a
2. (a) Groves, J. T.; Myers, R. S. J. Am. Chem. Soc. 1983,
105, 5791; (b) O’Malley, S.; Kodadek, T. Tetrahedron Lett.
1991, 32, 2445; (c) Maxwell, J. L.; O’Malley, S.; Brown,
K. C.; Kodadek, T. Organometallics 1992, 11, 645; (d)
O’Malley, S.; Kodadek, T. Organometallics 1992, 11, 2299;
(e) Collman, J. P.; Wang, Z.; Straumanis, A.; Quelquejeu,
M. J. Am. Chem. Soc. 1999, 121, 460.
Guest
1·Zn
10·Zn
TPP·Zn
Pyridine
23.5
25.6
20.4
19.0
19.3
19.4
20.6
20.7
20.4
19.5
19.5
19.7
21.5
21.0
20.2
4-Methylpyridine
4-tert-Butylpyridine
4-Phenylpyridine
3,5-Dimethylpyridine
3. Kuroda, Y.; Sera, T.; Ogoshi, H. J. Am. Chem. Soc. 1991,
113, 2793.
a Measured in CHCl3 at 298 K. Observed 563 nm. Standard deviation
is less than 10%.
4. (a) Groves, J. T.; Viski, P. J. Org. Chem. 1990, 55, 3628;
(b) Collman, J. P.; Herrmann, P. C.; Fu, L.; Eberspacher,
T. A.; Eubanks, M.; Boitrel, B.; Hayoz, P.; Zhang, X.;
Brauman, J. I.; Day, V. W. J. Am. Chem. Soc. 1997, 119,
3481.
5. (a) Rudkevich, M. M.; Verboom, W.; Reinhoudt, D. N.
J. Org. Chem. 1995, 60, 6585; (b) Middel, O.; Verboom,
W.; Reinhoudt, D. N. J. Org. Chem. 2001, 66, 3998; (c)
Elemans, J. A. A. W.; Claase, M. B.; Aarts, P. P. M.;
Rowan, A. E.; Schenning, A. P. H. J.; Nolte, R. J. M. J.
Org. Chem. 1999, 64, 7009.
were observed upon addition of pyridine. A non-linear
regression analysis13 on the UV changes gave an associ-
ation constant of 13.3 0.3×103 M−1, and binding ener-
gies of −23.5 kJ/mol. Binding energies of the other
host–guest complexes were similarly determined and are
summarized in Table 1.
6. (a) Haino, T.; Yanase, M.; Fukazawa, Y. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 259; (b) Haino, T.; Yanase, M.;
Fukazawa, Y. Tetrahedron Lett. 1997, 38, 3739; (c) Haino,
T.; Yanase, M.; Fukazawa, Y. Angew. Chem., Int. Ed.
1998, 37, 997; (d) Yanase, M.; Haino, T.; Fukazawa, Y.
Tetrahedron Lett. 1999, 40, 2781; (e) Yanase, M.; Mat-
suoka, M.; Tatsumi, Y.; Suzuki, M.; Iwamoto, H.; Haino,
T.; Fukazawa, Y. Tetrahedron Lett. 2000, 41, 492; (f)
Haino, T.; Nitta, K.; Saijo, Y.; Matsumura, K.; Hirakata,
M.; Fukazawa, Y. Tetrahedron Lett. 2000, 41, 4139; (g)
Haino, T.; Nitta, K.; Fukazawa, Y. Tetrahedron Lett. 2000,
41, 4139.
In the capped porphyrin case, axial pyridine ligands can
bind from either side of the porphyrin. When we con-
sider the binding energies of 1·Zn, 10·Zn and TPP·Zn
with pyridine itself, it is clear that the ligand bound
from the calix[5]arene side is 1·Zn. It is thus evident
that the attractive interaction between the axial ligand
and the p-wall of calix[5]arene cavity is operative in
1·Zn. The same is true in the case of 4-methylpyridine
and 1·Zn. On the other hand, bulky substituent(s) on
pyridine ring as in the case of 4-tert-butylpyridine,
4-phenylpyridine and 3,5-dimethylpyridine, prevented
the accommodation of the guest into the calix[5]arene
cavity. Therefore, those guests bound to the Zn–por-
phyrin from the opposite side of the calix[5]arene cap.
It is thus clear that the selectivity of the binding of
pyridine derivatives depends on the size of the alkyl
substituent. 4-Methyl pyridine shows the highest
affinity with 1·Zn. The methyl group should give a
good complementarity to the p-basic inner surface of
the calix[5]arene cavity.
7. Baldwin, J. E.; Crossley, M. J.; Klose, T.; O’Tear, A.;
Peters, M. K. Tetrahedron 1982, 38, 27.
8. Haino, T.; Matsumura, K.; Harano, T.; Yamada, K.;
Saijyo, Y.; Fukazawa, Y. Tetrahedron 1998, 54, 12185.
9. (a) Haino, T.; Yanase, M.; Fukazawa, Y. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 259; (b) Yanase, M.; Haino, T.;
Fukazawa, Y. Tetrahedron Lett. 1999, 40, 2781.
10. Compound 1: l 8.78 (d, J=4.5 Hz, 2H), 8.60 (d, J=4.5
Hz, 2H), 8.54 (d, J=4.5 Hz, 2H), 8.37 (d, J=4.5 Hz, 2H),
8.31 (d, J=8.5 Hz, 2H), 8.28 (d, J=8.5 Hz, 2H), 8.12 (d,
J=8.5 Hz, 2H), 8.1 (br, 1H), 8.04 (d, J=7.0 Hz, 2H), 7.96
(d, J=7.0 Hz, 2H), 7.90 (s, 2H), 7.83 (t, J=7.5 Hz, 2H),
7.8 (br, 1H), 7.6 (br, 4H), 7.4 (br, 3H), 7.18 (s, 2H), 6.92
(s, 2H), 6.83 (s, 2H), 6.80 (s, 2H), 6.47 (s, 2H), 6.20 (s, 2H),
3.96 (d, J=14.0 Hz, 1H), 3.86 (d, J=14.0 Hz, 2H), 3.76
(d, J=14.0 Hz, 2H), 3.30 (d, J=14.5 Hz, 3H), 3.016 (d,
J=14.5 Hz, 2H), 2.18 (s, 6H), 1.88 (s, 3H), -2.68 (s, 2H).
IR (CHCl3) cm−1: 3316, 2923, 1665, 1533, 1483, 1347, 1227,
802. UV–vis (CHCl3): umax, 425 nm (m 246 000 mol−1 cd3
cm−1), 551 (11 400), 588 (2 100). HRMS (FAB-MS positive
Mode, NBA) found 1368.5128, calcd 1368.5149
(C92H68N6O7).
Acknowledgements
The measurement of Mass spectroscopy was made
using JEOL SX-102A at the Instrument Center for
Chemical Analysis, Hiroshima University. This work
was supported by Grant-in Aid for Scientific Research
(No. 10304053) from the Ministry of Education, Sci-
ence, Sports and Culture, Japan, which is gratefully
acknowledged.
11. (a) Nappa, M.; Valentine, J. S. J. Am. Chem. Soc. 1978,
100, 5075; (b) Miller, J. R.; Dorough, G. D. J. Am. Chem.
Soc. 1952, 74, 3977; (c) Hambright, P. J. Chem. Soc., Chem.
Commun. 1967, 470.
References
1. (a) Collman, J. P. Acc. Chem. Res. 1988, 10, 265; (b)
Momenteau, M.; Teed, C. A. Chem. Rev. 1994, 94, 659; (c)
Canter, M. J.; Tarner, P. Coord. Chem. Rev. 1991, 108, 115;
(d) Holten, D.; Bocian, D. F.; Lindsey, J. S. Acc. Chem.
Res. 2002, 35, 57.
1
12. The measurements were performed by H NMR titration
experiments in CDCl3. As host molecule 1·Zn was added
to the solution of 4-methylpyridine in CDCl3, the reso-