ORGANIC
LETTERS
2007
Vol. 9, No. 5
869-872
A Spirodiepoxide-Based Strategy to the
B Ring System of Pectenotoxin 4
A−
Stephen D. Lotesta, Yongquan Hou, and Lawrence J. Williams*
Department of Chemistry and Chemical Biology, Rutgers, The State UniVersity of
New Jersey, Piscataway, New Jersey 08854
Received December 20, 2006
ABSTRACT
A synthesis of a pectenotoxin 4 C1−C15 segment is reported. Suitable C1−C7 and C8−C15 segments were prepared, coupled, converted to
I and the C3-hydroxy variant, and then cyclized. Key findings include the stereoselective conversion of the allene to the corresponding
spirodiepoxide, oxidative cleavage of the p-methoxybenzyl ether, and cyclization of the spirodiepoxide to spiroketal II.
Here we report studies that culminated in the preparation of
a C1-C15 segment of pectenotoxin 4 (PTX-4) using the
spirodiepoxide (SDE) functional group. Nucleophilic addition
to SDEs gives vicinal triads composed of hydroxyl, ketone,
and a syn-substituted substituent (e.g., 6f7, Figure 1B).1
Although addition of carbon nucleophiles to SDEs would
give densely functionalized R-hydroxy ketone motifs related
to polyketides (e.g., erythromycin1,2), intramolecular addition
of oxygen nucleophiles would give highly functionalized
cyclic ethers and related ring systems present in a myriad of
biomedically relevant substances, including the pectenotoxin
class of natural products.3
drofurans of PTX-4 flanked by oxygenated substituents and
thereby facilitate the synthesis of this and related targets.
Among the potential strategies for accessing the C1-C15
portion of PTX-4, we were intrigued by the possibility of
forming the A-B spiroketal ring system by way of an
intramolecular ketone addition to a SDE followed by trapping
the oxocarbenium ion with the resident alcohol (2f4f7,
Figure 1B). Alternatively, the A-B spiroketal could form
by lactol-initiated SDE opening (2f5f7).7 The stereochem-
ical outcome of each potential pathway notwithstanding, for
this study we were aware that isomerization to the more
The pectenotoxins (PTXs) have recently been the focus
of intense research,4 and one total synthesis has appeared.5,6
PTX-4 (Figure 1A) is a 34-membered macrolide that houses
seven oxygen-containing ring systems and 19 stereocenters.
This target represents a challenging problem to synthesis.
In principle, SDEs can provide access to the three tetrahy-
(3) (a) Friedrich, D.; Paquette, L. J. Nat. Prod. 2002, 65, 126. (b) Sheu,
J.; Wang, G.; Duh, C.; Soong, K. J. Nat. Prod. 2003, 66, 662. (c) Sakabe,
N.; Goto, T.; Hirata, Y. Tetrahedron 1977, 33, 3077. (d) Badder, A.; Garre,
C. Corresp.-Bl. Schweiz. Aerzte 1887, 17, 385. 1232. (e) Reategui, R. F.;
Gloer, J. B.; Campbell, J.; Shearer, C. A. J. Nat. Prod. 2005, 68, 701. (f)
Sasaki, K.; Wright, J. L. C.; Yasumoto, T. J. Org. Chem. 1998, 63, 2475.
(g) Yasumoto, T.; Murata, M.; Oshima, Y.; Sano, M.; Matsumoto, G. K.;
Clardy, J. Tetrahedron 1985, 41, 1019.
(4) For lead references, see: (a) Halim, R.; Brimble, M. A.; Merten, J.
Org. Lett. 2005, 7, 2659. (b) Bondar, D.; Liu, J.; Muller, T.; Paquette, L.
A. Org. Lett. 2005, 7, 1813. (c) Peng, X.; Bondar, D.; Paquette, L. A.
Tetrahedron 2004, 60, 9589. (d) Paquette, L. A.; Peng, X.; Bondar, D. Org.
Lett. 2002, 4, 937. (e) Micalizio, G. C.; Roush, W. R. Org. Lett. 2001, 3,
1949. (f) Amano, S.; Fujiwara, K.; Murai, A. Syn. Lett. 1997, 1300.
(5) PTX-4: (a) Evans, D. A.; Rajapakse, H. A.; Stenkamp, D. Angew.
Chem., Int. Ed. 2002, 41, 4569. (b) Evans, D. A.; Rajapakse, H. A.; Chiu,
A.; Stenkamp, D. Angew. Chem., Int. Ed. 2002, 41, 4573.
(1) (a) Katukojvala, S.; Barlett, K. N.; Lotesta, S. D.; Williams, L. J. J.
Am. Chem. Soc. 2004, 126, 15348 and references cited therein. (b) Ghosh,
P.; Lotesta, S. D.; Williams, L. J. J. Am. Chem. Soc., in press. (c) Lotesta,
S. D.; Kiren, S. K.; Sauers, R. R.; Williams, L. J., submitted.
(2) (a) Cane, D. E.; Walsh, C. T.; Khosla, C. Science 1998, 282, 63.
Katz, L. Chem. ReV. 1997, 97, 2557. (b) Aldridge, D. C.; Turner, W. B. J.
Antibiot. 1969, 22, 170. (c) Achenbach, H.; Muehlenfeld, A.; Fauth, U.;
Zaehner, H. Tetrahedron Lett. 1985, 26, 6167. (d) Kellner, M.; Wolf, G.;
Lee, Y. S.; Hansske, F.; Konetschny-Rapp, S.; Pessara, U.; Scheuer, W.;
Stockinger, H. J. Antibiot. 1993, 46, 1334. (e) Rinehart, K. L., Jr.; Martin,
P. K.; Coverdale, C. E. J. Am. Chem. Soc. 1966, 88, 3149.
(6) Natural PTX-4 can be converted into other PTXs (e.g., PTX-8).
See: ref 5b and references therein.
(7) Crandall, J. K.; Rambo, E. Tetrahedron Lett. 1994, 35, 1489.
10.1021/ol063087n CCC: $37.00
© 2007 American Chemical Society
Published on Web 02/08/2007