C O M M U N I C A T I O N S
tion,16 directed by the primary alcohol, gave 16 (see box in Scheme
2). Proof of stereochemical assignment was established by preparing
17. Selective conversion of 16 to the p-methoxy benzylidine
followed by formation of the benzyl ether gave the known protected
tetrol.17 Thus, this oxygenated polypropionate stereotetrad was
prepared in a short, efficient, and selective route.
Table 2. Conversion of Allenes to Substituted Hydroxy Ketones
(Condition A: DMDO/CHCl3, -40 °C to rt, 2 h)
In summary, we have disclosed the first example of a transition-
metal-mediated transformation of SDEs and the first general method
for addition of carbon nucleophiles to spirodiepoxide, an emergent
functional group with considerable potential in synthetic applica-
tions. The method constitutes a concise approach to densely
functionalized branched oxygenated motifs.
Selectivity
temp
C)
time
(h)
yield
(%)
entry
allene
R4
(
°
r1
r2
1a
6a
6b
6c
6d
6a
6b
6c
6d
6a
6b
6c
6a
6b
6c
6d
CH3
CH3
CH3
CH3
0
0
0
0.5
0.5
0.5
5.5
2
2
2
7
2
2
2
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
>20:1
2:1
na
6:1
8:1
na
74
81
84
80
67
72
76
66
66
65
68
59
71
65
62
2a
3a
4b,e
5a
-78 to rt
-78 to rt
-78 to rt
-78 to rt
-78 to rt
-78 to rt
-78 to rt
-78 to rt
-78 to rt
-78 to rt
-78 to rt
-78 to rt
Acknowledgment. Financial support from Merck & Co.,
Johnson & Johnson (Discovery Award), and Rutgers, The State
University of New Jersey, is gratefully acknowledged. We thank
Dr. Tom Emge for crystallographic analysis, and Dr. Sreenivas
Katukojvala for preliminary studies toward 16.
n-Bu
n-Bu
n-Bu
n-Bu
TMS-CH2
TMS-CH2
TMS-CH2
Ph
6a
na
7a
6:1
8:1
2:1
na
6:1
2:1
na
8b,e
9a
10a
11a
12a
13c
14c
15d,e
Supporting Information Available: Synthetic methods and char-
acterization data (PDF). This material is available free of charge via
2
2
2
5
Ph
Ph
Ph
6:1
8:1
References
a 2.5 equiv of CuCN, 2.5 equiv of RLi, ether. b 5 equiv of CuCN, 5
equiv of n-BuLi, ether. c 3 equiv of CuI, 6 equiv of PhLi, ether. d 6 equiv
of CuI, 12 equiv of PhLi, ether. e See Scheme 1 for the structure of 6d.
(1) (a) Crandall, J. K.; Machleder, W. H. J. Am. Chem. Soc. 1968, 90, 7292.
(b) Crandall, J. K.; Conover, W. W.; Komin, J. B.; Machleder, W. H. J.
Org. Chem. 1974, 39, 1723.
(2) (a) Cane, D. E.; Walsh, C. T.; Khosla, C. Science 1998, 282, 63 (b) Katz,
L. Chem. ReV. 1997, 97, 2557. (c) Aldridge, D. C.; Turner, W. B. J.
Antibiot. 1969, 22, 170. (d) Achenbach, H.; Muehlenfeld, A.; Fauth, U.;
Zaehner, H. Tetrahedron Lett. 1985, 26, 6167. (e) Laatsch, H.; Kellner,
M.; Wolf, G.; Lee, Y. S.; Hansske, F.; Konetschny-Rapp, S.; Pessara, U.;
Scheuer, W.; Stockinger, H. J. Antibiot. 1993, 46, 1334. (f) Rinehart, K.
L., Jr.; Martin, P. K.; Coverdale, C. E. J. Am. Chem. Soc. 1966, 88, 3149.
(3) (a) Lipshutz, B. H. In Organometallics in Synthesis: A Manual; Schlosser,
M., Hegedus, L. S., Lipshutz, B. H., Marshall, J. A., Nakamura, E.,
Negishi, E., Reetz, M. T., Semmelhack, M. F., Smith, K., Yamamoto,
H., Eds.; Wiley: England, 2004; Vol. VI, pp 665-816 and references
cited therein. (b) Baldwin, I. C.; Beckett, R. P.; Williams, J. M. J. Synthesis
1996, 34. (c) Hrubiec, R. T. J. Org. Chem. 1984, 49, 385. (d) Elsevier,
C. J.; Vermeer, P. J. Org. Chem. 1989, 54, 3726. (e) Meyers, A. I.; Snyder,
L. J. Org. Chem. 1992, 57, 3814.
Scheme 2 a
(4) (a) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A. Tetrahedron 1984,
40, 5005. (b) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A.; Parker,
D. J. Org. Chem. 1984, 49, 3928.
(5) Johnson, C. R.; Herr, R. W.; Wieland, D. M. J. Org. Chem. 1973, 38,
4263.
(6) Hamon, L.; Levisalles, J. J. Organomet. Chem. 1983, 253, 259.
(7) See refs 4a and 6 as well as: (a) Posner, G. H.; Sterling, J. J. J. Am.
Chem. Soc. 1973, 95, 3076. (b) Posner, G. H.; Whitten, C. E.; Sterling, J.
J. J. Am. Chem. Soc. 1973, 95, 7788.
(8) Mitani, M.; Matsumoto, H.; Gouda, N.; Koyama, K. J. Am. Chem. Soc.
1990, 112, 1286.
(9) The alternative process of Lewis acid-promoted carbocation formation
followed by single electron transfer from Cu(I), though not strictly
excluded, is unlikely given the reaction regioselectivity.
a Conditions: (a) n-BuLi, ether, -78 °C to rt, then 13, -20 °C; (b)
{[1S,2S)-TsDPEN]RuCl(η6-p-cymene)} (5 mol %), iPrOH, rt, 87% (2 steps),
>95:5 dr; (c) i. MsCl, Et3N, CH2Cl2, -78 °C to rt; ii. MeLi, CuCN, ether,
-78 °C to rt, 98%, >95:5 dr; (d) i. DMDO/CHCl3, -40 °C to rt; ii. MeLi,
CuCN, ether, -78 °C to rt, 80%, 8:1 dr; (e) AcOH, H2O, THF, rt, 85%; (f)
(CH3)4NHB(OAc)3, CH3CN, AcOH, -40 °C to rt, 90%, 6:1 dr; (g)
MeOC6H4CH(OMe)2, PPTS, rt, 91%; (h) BnBr, NaH, (n-Bu)4NI, DMF,
HMPA, rt, 76%.
(10) (a) Gibert, M.; Ferrer, M.; Sanchez-Baeza, F.; Messeguer, A. Tetrahedron
1997, 53, 8643. For a model of allene epoxidation, see Supporting
Information. (b) Crandall, J. K.; Batal, D. J.; Sebesta, D. P.; Ling, F. J.
Org. Chem. 1991, 56, 1153. (c) Katukojvala, S.; Barlett, K. N.; Lotesta,
S. D.; Williams, L. J. J. Am. Chem. Soc. 2004, 126, 15348.
(11) See Supporting Information.
(12) Posner, G. H. Org. React. 1975, 22, 253.
(13) Evans, D. A.; Glorius, F.; Burch, J. D. Org. Lett. 2005, 7, 3331.
(14) The enantiomer of 14 is known. See: Xu, L.; Wu, X.; Zheng, G. R.; Cai,
J. C. Chin. Chem. Lett. 2000, 11, 213.
alkynylated with 1414 and then reduced15 by enantioselective Noyori
hydrogenation to the propargyl alcohol (87% (two steps), >95:5
dr). This was exposed to mesyl chloride, and the crude mesylate
was converted to allene 6d (99%). Subjection of 6d to oxidation/
organocuprate addition gave the desired syn-R-hydroxy, R′-methyl
ketone (15). The diastereomers were readily separated by silica gel
chromatography after removal of the primary silyl group. Reduc-
(15) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
1997, 119, 8738.
(16) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988,
110, 3560.
(17) Acetal 17 proved identical, by 1H and 13C NMR and optical rotation
comparison, to the reported compound prepared previously via a 13-step
sequence in an insightful synthesis of 9-(S)-dihydroerythronolide A: Peng,
Z.; Woerpel, K. A. J. Am. Chem. Soc. 2003, 125, 6108.
JA068813W
9
J. AM. CHEM. SOC. VOL. 129, NO. 9, 2007 2439