Angewandte
Chemie
Heidebrecht, Jr., J. Am. Chem. Soc. 2003, 125, 1843, and
references therein.
yielding exclusively the a,b-unsaturated sulfone 22 with E
configuration.[33] This electron-deficient system exhibited
diminished reactivity under Lewis acid catalyzed Nazarov
conditions. A three-step sequence effected replacement of the
sulfonyl group with a hydrogen atom. Carbonyl reduction
gave solely the b alcohol,[34] and desulfonylation with sodium
naphthalide at À788C in THF selectively occurred with
retention of double-bond geometry. Mild allylic oxidation
provided the Z enone of 23 as indicated by the vicinal
[10] A. D. Rodriguez, E. Gonzµlez, C. Ramirez, Tetrahedron 1998,
54, 11683.
[11] a) I. Wahlberg, A.-M. Eklund, T. Nishida, C. R. Enzell, J.-E.
Berg, Tetrahedron Lett. 1983, 24, 843; b) N. Enoki, A. Furusaki,
K. Suehiro, R. Ishida, T. Matsumoto, Tetrahedron Lett. 1983, 24,
4341.
[12] D. R. Williams, P. J. Coleman, C. R. Nevill, L. A. Robinson,
Tetrahedron Lett. 1993, 34, 7895.
[13] a) D. R. Williams, P. J. Coleman, S. S. Henry, J. Am. Chem. Soc.
1993, 115, 11654; b) D. R. Williams, P. J. Coleman, Tetrahedron
Lett. 1995, 36, 39.
[14] M. Hiersemann, H. Helmboldt, Top. Curr. Chem. 2005, 243, 73.
[15] For leading references: a) N. Kato, H. Okamoto, H. Takeshita,
Tetrahedron 1996, 52, 3921; b) N. Kato, K. Nakanishi, H.
Takeshita, Bull. Chem. Soc. Jpn. 1986, 59, 1109.
[16] M. Rowley, M. Tsukamoto, Y. Kishi, J. Am. Chem. Soc. 1989,
111, 2735.
[17] a) R. K. Boeckman, Jr., A. Arvanitis, M. E. Voss, J. Am. Chem.
Soc. 1989, 111, 2737; b) See also: L. A. Paquette, T.-Z. Wang,
N. H. Vo, J. Am. Chem. Soc. 1993, 115, 1676.
[18] a) T. F. Jamison, S. Shambayati, W. E. Crowe, S. L. Schreiber, J.
Am. Chem. Soc. 1994, 116, 5505; b) L. A. Paquette, L.-Q. Sun, D.
Friedrich, P. B. Savage, Tetrahedron Lett. 1997, 38, 195.
[19] a) G. Mehta, N. Krishnamurthy, J. Chem. Soc. Chem. Commun.
1986, 1319; b) W. G. Dauben, A. M. Warshawsky, J. Org. Chem.
1990, 55, 3075; c) B. B. Snider, K. Yang, J. Org. Chem. 1992, 57,
3615; d) J. H. Rigby, T. McGuire, C. Senanayake, K. Khemani, J.
Chem. Soc. Perkin Trans. 1 1994, 3449; e) C. E. Chase, J. A.
Bender, F. G. West, Synlett 1996, 1173; f) P. A. Wender, J. M.
Nuss, D. B. Smith, A. Suµrez-Sobrino, J. Vågberg, D. Decosta, J.
Bordner, J. Org. Chem. 1997, 62, 4908; g) S. M. Sieburth, K. F.
McGee, Jr., T. H. Al-Tel, J. Am. Chem. Soc. 1998, 120, 587;
h) A. J. Blake, A. J. Highton, T. N. Majid, N. S. Simpkins, Org.
Lett. 1999, 1, 1787; i) S. J. Bader, M. L. Snapper, J. Am. Chem.
Soc. 2005, 127, 1201.
1
coupling constant (JAB = 10.7 Hz) in the H NMR spectrum.
Finally, treatment of 23 under protic or Lewis acid conditions
resulted in a smooth Nazarov reaction to 24 (and its C6
epimer).[35] Upon standing for several days, chloroform
solutions of 24 yielded colorless crystals, which were unam-
biguously identified by X-ray crystallography as the hydro-
peroxide 25,[36] and subsequent reduction with sodium hydro-
gen sulfite gave 1. Autoxidation of 24 was postulated to occur
by enolization and capture of the conjugated enol by
dissolved oxygen. This slow, serendipitous reaction to 25
was not pursued as a viable synthetic conversion. Completion
of the total synthesis of fusicoauritone was more efficiently
rendered by direct oxidation of a mixture of 24 and its C6
epimer with tert-butylhypochlorite in aqueous acetone pro-
viding a 40% yield of synthetic 1, which proved to be identical
to the natural substance in all respects (optical rotation data
and spectroscopic characterizations).[37]
Received: September 19, 2006
Revised: October 20, 2006
Published online: December 15, 2006
Keywords: fusicoccanes · Julia condensation ·
.
medium-ring compounds · Nazarov cyclization ·
total synthesis
[20] M. A. Tius, Eur. J. Org. Chem. 2005, 2193.
[21] By slight modification of a known procedure, (S)-limonene
oxide was converted into 5 in 50% overall yield. J. D. White, J. F.
Ruppert, M. A. Avery, S. Torii, J. Nokami, J. Am. Chem. Soc.
1981, 103, 1813.
[22] a) G. Mehta, N. Krishnamurthy, Tetrahedron Lett.1987, 28, 5945;
b) For a related [2,3] sigmatropic rearrangement from 5: J.
Wright, G. J. Drtina, R. A. Roberts, L. A. Paquette, J. Am.
Chem. Soc. 1988, 110, 5806.
[23] A. J. Mancuso, S.-L. Huang, D. J. Swern, J. Org. Chem. 1978, 43,
2480.
[24] G. Linstrumelle, J. K. Krieger, G. M. Whitesides in Organic
Synthesis, Vol. 55 (Ed.: S. Masamune), Wiley, NewYork, 1976,
pp. 103 – 113.
[1] N. A. Petasis, M. A. Patane, Tetrahedron 1992, 48, 5757.
[2] a) K. D. Barrow, D. H. R. Barton, E. B. Chain, U. F. W. Ohn-
sorge, R. Thomas, J. Chem. Soc. Chem. Commun. 1968, 1198;
b) A. Ballio, C. G. Casinovi, V. DꢀAlessio, G. Grandolini, G.
Randazzo, C. Rossi, Experimentia 1974, 30, 844; c) For recent
examples: S. Kim, D.-S. Shin, T. Lee, K.-B. Oh, J. Nat. Prod.
2004, 67, 448.
[3] For a leading reference: T. Sassa, T. Ooi, M. Nukina, N. Kato,
Biosci. Biotechnol. Biochem. 1998, 62, 1815.
[4] T. Hashimoto, M. Tori, Z. Taira, Y. Asakawa, Tetrahedron Lett.
1985, 26, 6473.
[25] The diastereomeric allylic alcohols were separately subjected to
Johnson orthoester Claisen conditions leading to the assignment
of stereochemistry as described for 8. Inversion of the undesired
alcohol epimer to provide additional quantities of 8 was not
feasible.
[5] S. Nozoe, M. Morisaki, K. Tsuda, Y. Iitaka, N. Takahashi, S.
Tamura, K. Ishibashi, M. Shirasaka, J. Am. Chem. Soc. 1965, 87,
4968.
[6] Y. Iitaka, I. Watanabe, I. T. Harrison, S. Harrison, J. Am. Chem.
Soc. 1968, 90, 1092.
[26] The stereochemistry of the newly formed chiral center (C7) was
confirmed by degradation. The g,d-unsaturated ester obtained
from Claisen rearrangement of 8 was reduced (LiBH4), followed
by ozonolysis with a NaBH4 quench to produce (R)-2-methyl-
butane-1,4-diol, [a]2D4 = + 22.6 (c = 0.6, CHCl3). M. Lautens,
T. A. Stammers, Synthesis 2002, 14, 1993.
[7] a) B. DeBoer, Trends Plant Sci. 1997, 2, 60; b) K. Asahi, Y.
Honma, K. Hazeki, T. Sassa, Y. Kubohara, A. Sakurai, N.
Takahashi, Biochem. Biophys. Res. Commun. 1997, 238, 758.
[8] a) H.-J. Liu, C.-L. Wu, H. Becker, J. Zapp, Phytochemistry 2000,
53, 845; b) J. Zapp, G. Burkhardt, H. Becker, Phytochemistry
1994, 37, 787; c) S. Huneck, G. Baxter, A. F. Cameron, J. D.
Connolly, D. S. Rycroft, Tetrahedron Lett. 1983, 24, 3787.
[9] a) A. Banjeri, R. B. Jones, G. Mellows, L. Phillips, K.-Y. Sim, J.
Chem. Soc. Perkin Trans. 1 1976, 2221; b) For the production of
these metabolites in liverwort: Y. Asakawa, X. Lin, M. Tori, K.
Kondo, Phytochemistry 1990, 29, 259; c) D. R. Williams, R. W.
[27] G. M. Whitesides, W. J. Ehmann, J. Org. Chem. 1970, 35, 3565.
[28] The trans-b-hydroxysulfone is distinguished by a large vicinal
1
coupling constant (J = 10 Hz) in the H NMR spectrum of the
major product indicating a diaxial disposition of methine
hydrogens. Each sulfone diastereomer independently underwent
Angew. Chem. Int. Ed. 2007, 46, 915 –918
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
917