chirality. Thus, Me2Zn (2.4 equiv) reacted smoothly with
(Z)-pentafluorobenzoate 2b (entry 8) in the presence of
CuCN‚2LiCl (1.2 equiv) at -30 °C for 16 h and afforded
the expected substituted product 1h with almost no loss of
the enantiomeric excess (89% ee) and in 95% yield. Et2Zn
(entry 9, 86%, 89% ee), i-Pr2Zn (entry 10, 89%, 87% ee),
and Ph2Zn (entry 11, 93%, 89% ee) gave excellent results,
although the addition of i-Pr2Zn showed a poorer transfer
(87% ee recovered) probably due to steric hindrance.
Table 2. Preparation of (E)-R,â-Unsaturated Ketone 6 by
Stereoselective Friedel-Crafts Acylation on Alkenylsilanes 1
Alkenylsilanes of type 1 underwent Friedel-Crafts acy-
lation-type reactions,14 providing a synthesis of R,â-unsatur-
ated ketones of type 6 (Scheme 3). Thus, the alkenylsilane
Scheme 3. Stereoselective Friedel-Crafts Acylation of
Alkenylsilanes of Type 1
1a (entry 1 of Table 2) was treated with AlCl3 (1.1 equiv)
and benzoyl chloride (1.1 equiv) in CH2Cl2 (-78 °C, 3 h,
25 °C) and afforded the corresponding (E)-R,â-unsaturated
(6) For copper-catalyzed reactions using chiral ligands, see: (a) van
Klaveren, M.; Persson, E. S. M.; del Villar, A.; Grove, D. M.; Ba¨ckvall,
J.-E.; van Koten, G. Tetrahedron Lett. 1995, 36, 3059. (b) Karlstro¨m, A.
S. E.; Huerta, F. F.; Meuzelaar, G. J.; Ba¨ckvall, J.-E. Synlett 2001, 923. (c)
Meuzelaar, G. J.; Karlstro¨m, A. S. E.; van Klaveren, M.; Persson, E. S.
M.; del Villar, A.; van Koten, G.; Ba¨ckvall, J.-E. Tetrahedron 2000, 56,
2895. (d) Du¨bner, F.; Knochel, P. Angew. Chem., Int. Ed. 1999, 38, 379.
(e) Du¨bner, F.; Knochel, P. Tetrahedron Lett. 2000, 41, 9233. (f) Alexakis,
A.; Malan, C.; Lea, L.; Benhaim, C.; Fournioux, X. Synlett 2001, 927. (g)
Alexakis, A.; Croset, K. Org. Lett. 2002, 4, 4147. (h) Tissot-Croset, K.;
Polet, D.; Alexakis, A. Angew. Chem., Int. Ed. 2004, 43, 2426. (i) Tissot-
Croset, K.; Alexakis, A. Tetrahedron Lett. 2004, 45, 7375. (j) Falciola, C.;
Tissot-Croset, K.; Alexakis, A. Angew. Chem., Int. Ed. 2006, 45, 5995. (k)
Alexakis, A.; Tomassini, A.; Andrey, O.; Bernardinelli, G. Eur. J. Org.
Chem. 2005, 1332. (l) Polet, D.; Alexakis, A. Org. Lett. 2005, 7, 1621. (m)
Malda, H.; Van Zijl, A. W.; Arnold, L. A.; Feringa, B. L. Org. Lett. 2001,
3, 1169. (n) Van Zijl, A. W.; Arnold, L. A.; Minnaard, A. J.; Feringa, B.
L. AdV. Synth. Catal. 2004, 346, 413. (o) Lo´pez, F.; Van Zijl, A. W.
Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2006, 409. (p) Luchaco-
Cullis, C. A.; Mizutani, H.; Murphy, K. E.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2001, 40, 1456. (q) Murphy, K. E.; Hoveyda, A. H. J. Am. Chem.
Soc. 2003, 125, 4690. (r) Kacprzynski, M. A.; Hoveyda, A. H. J. Am. Chem.
Soc. 2004, 126, 10676. (s) Larsen, A. O.; Leu, W.; Nieto Oberhuber, C.;
Campbell, J. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 11130. (t)
Van Veldhuisen, J. J.; Campbell, J. E.; Giudici; R. E.; Hoveyda, A. H. J.
Am. Chem. Soc. 2005, 127, 6877. (u) Lee, Y.; Hoveyda, A. H. J. Am. Chem.
Soc. 2006, 128, 15604. (v) Ongeri, S.; Piarulli, U.; Roux, M.; Monti, C;
Gennari, C. HelV. Chim. Acta 2002, 85, 3388.
a The enantiomeric excess was determined by HPLC or GC analysis. In
each case the racemic product was used for calibration. b Isolated yield of
analytically pure product.
ketone 6a with full retention of the chiral information (65%,
90% ee). Various acid chlorides could be similarly reacted.
For example, aliphatic acid chlorides such as the bulky
pivaloyl chloride (entry 2) or acetyl chloride (entry 3) were
added with retention of the (E)-stereochemistry (90% ee,
respectively, for 6b and 6c).
(7) (a) Harrington-Frost, N.; Leuser, H.; Calaza, M. I.; Kneisel, F. F.;
Knochel, P. Org. Lett. 2003, 5, 2111. (b) Soorukram, D.; Knochel, P. Org.
Lett. 2004, 6, 2409. (c) Calaza, M. I.; Hupe, E.; Knochel, P. Org. Lett.
2003, 5, 1059.
(8) Leuser, H.; Perrone, S.; Liron, F.; Kneisel, F. F.; Knochel, P. Angew.
Chem., Int. Ed. 2005, 44, 4627.
Interestingly substituted R,â-unsaturated furyl ketone 6d
(entry 4) could be easily prepared with high enantioselectivity
(9) Soorukram, D.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 3686.
(10) Sakaguchi, K.; Higashino, M.; Ohfune, Y. Tetrahedron 2003, 59,
6647.
(11) (a) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987,
109, 5551. (b) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37,
1986.
(13) (a) Kneisel, F. F.; Dochnahl, M.; Knochel, P. Angew. Chem., Int.
Ed. 2004, 43, 1017. (b) Kneisel, F. F.; Leuser, H.; Knochel, P. Synthesis
2005, 2625.
(14) (a) Paquette, L. A.; Fristad, W. E.; Dime, D. S.; Bailey, T. R. J.
Org. Chem. 1980, 45, 3017. (b) Zhao, H.; Cai, M.-Z. Synth. Commun. 2003,
33, 1643.
(12) Guintchin, B. K.; Bienz, S. Organometallics 2004, 23, 4944.
Org. Lett., Vol. 9, No. 6, 2007
1043