Published on Web 02/21/2007
Molecular Insights into Azumamide E Histone Deacetylases
Inhibitory Activity
Nakia Maulucci,† Maria Giovanna Chini,‡ Simone Di Micco,‡ Irene Izzo,*,†
Emiddio Cafaro,† Adele Russo,† Paola Gallinari,§ Chantal Paolini,§
Maria Chiara Nardi,§ Agostino Casapullo,‡ Raffaele Riccio,‡ Giuseppe Bifulco,*,‡
and Francesco De Riccardis*,†
Contribution from the Department of Chemistry, UniVersity of Salerno, Via Ponte Don Melillo,
84084 Fisciano, Salerno, Italy, Department of Pharmaceutical Sciences, UniVersity of Salerno,
Via Ponte Don Melillo, 84084 Fisciano, Salerno, Italy, and Department of Biochemistry,
Istituto di Ricerche di Biologia Molecolare “P. Angeletti”, Via Pontina, Km 30,600,
00040 Pomezia, Rome, Italy
Received December 7, 2006; E-mail: dericca@unisa.it; bifulco@unisa.it; iizzo@unisa.it
Abstract: Azumamide E, a cyclotetrapeptide isolated from the sponge Mycale izuensis, is the most powerful
carboxylic acid containing natural histone deacetylase (HDAC) inhibitor known to date. In this paper, we
describe design and synthesis of two stereochemical variants of the natural product. These compounds
have allowed us to clarify the influence of side chain topology on the HDAC-inhibitory activity. The present
contribution also reveals the identity of the recognition pattern between azumamides and the histone
deacetylase-like protein (HDLP) model receptor and reports the azumamide E unprecedented isoform
selectivity on histone deacetylases class subtypes. From the present studies, a plausible model for the
interaction of azumamides with the receptor binding pocket is derived, providing a framework for the rational
design of new cyclotetrapeptide-based HDAC inhibitors as antitumor agents.
Introduction
HDAC inhibitors are divided in six distinct groups of zinc
chelators.8 Among them, azumamide A-E (1-5), recently
isolated by Nakao et al. from the marine sponge Mycale izuensis,
collocate in the small family of hydrophobic cyclotetrapeptides
(Figure 1).9
Histone deacetylases (HDACs) are a family of evolutionarily
conserved metalloenzymes that, interfering with posttranslational
chromatin modification,1 modulate cell differentiation,2 apop-
tosis,3 cell-cycle progression,4 and angiogenesis.5
Structurally, azumamides include three D-R-amino acids (D-
Phe, D-Tyr, D-Ala, D-Val) and a unique â-amino acid assigned
as (Z,2S,3R)-3-amino-2-methyl-5-nonenedioic acid 9-amide
(amnaa), in azumamides A (1), B (2), and D (4), and (Z,2S,3R)-
3-amino-2-methyl-5-nonenedioic acid (amnda), in azumamides
C (3) and E (5). When compared with the other natural
cyclopeptide HDAC inhibitors (e.g., trapoxin A (6),10 apicidin
D1,11 FR-235222,12 FR-225497,13 chlamydocin,14 HC toxin,15
WF-3161,16 Cyl-217), azumamides show an intriguing retro-
enantio arrangement,18 displaying an inverse direction of the
For their epigenetic effects on gene expression,6 HDAC
inhibitors have been considered promising anticancer agents and
many natural and synthetic inhibitors have entered in clinical
trials as possible antitumor agents.7
† Department of Chemistry, University of Salerno.
‡ Department of Pharmaceutical Sciences, University of Salerno.
§ Istituto di Ricerche di Biologia Molecolare “P. Angeletti”.
(1) Bayle, J. H.; Crabtree, G. R. Chem. Biol. 1997, 4, 885-888.
(2) Munster, P. N.; Troso-Sandoval, T.; Rosen, N.; Rifkind, R.; Marks, P. A.;
Richon, V. M. Cancer Res. 2001, 61, 8492-8497.
(3) Guo, F.; Sigua, C.; Tao, J.; Bali, P.; Gorge, P.; Li, Y.; Wittmann, S.;
Moscinski, L.; Atadja, P.; Bhalla, K. Cancer Res. 2004, 64, 2580-2589.
(4) (a) Sambucetti, L.; Fischer, D. D.; Zabludoff, S.; Kwon, P. O.; Chamberlin,
H.; Trogani, N.; Xu, H.; Cohen, D. J. Biol. Chem. 1999, 274, 34940-
34947. (b) Sato, N.; Ohta, T.; Kitagawa, H.; Kayahara, M.; Ninomiya, I.;
Fushida, S.; Fujimura, T.; Nishimura, G.; Shimizu, K.; Miwa, K. Int. J.
Oncol. 2004, 24, 679-685.
(10) (a) Itazaki, H.; Nagashima, K.; Sugita, K.; Yoshida, H.; Kawamura, Y.;
Yasuda, Y.; Matsumoto, K.; Ishii, K.; Uotani, N.; Nakai, H.; Terui, A.;
Yoshimatsu, S.; Ikenishi, Y.; Nakagawa, Y. J. Antibiot. 1990, 43, 1524-
1532. (b) Kijima, M.; Yoshida, M.; Sugita, K.; Horinouchi, S.; Beppu, T.
J. Biol. Chem. 1993, 268, 22429-22435. (c) Taunton, J.; Hassig, C. A.;
Schreiber, S. L. Science 1996, 272, 408-411.
(11) Singh, S. B.; Zink, D. L.; Polishook, J. D.; Dombrowski, A. W.; Darkin-
Rattray, S. J.; Schmatz, D. M.; Goetz, M. A. Tetrahedron Lett. 1996, 37,
8077-8080.
(12) (a) Mori, H.; Urano, Y.; Abe, F.; Furukawa, S.; Tsurumi, Y.; Sakamoto,
K.; Hashimoto, M.; Takase, S.; Hino, M.; Fujii, T. J. Antibiot. 2003, 56,
72-79. (b) Mori, H.; Urano, Y.; Abe, F.; Furukawa, S.; Furukawa, S.;
Sakai, F.; Hino, M.; Fujii, T. J. Antibiot. 2003, 56, 80-86.
(13) Mori, H.; Fumie, A.; Seiji, Y.; Shigehiro, T.; Motohiro, H. PCT Application
WO 00/08048, 2000.
(5) Deroanne, C. F.; Bonjean, K.; Servotte, S.; Devy, L.; Colige, A.; Clausse,
N.; Blacher, S.; Verdin, E.; Foidart, J.-M.; Nusgens, B. V.; Castronovo, V.
Oncogene 2002, 21, 427-436.
(6) Biel, M.; Wascholowski, V.; Giannis, A. Angew. Chem. 2005, 117, 3248-
3280; Angew. Chem., Int. Ed. 2005, 44, 3186-3216.
(7) Minucci, S.; Pelicci, P. G. Nat. ReV. Cancer 2006, 6, 38-51.
(8) Miller, T. A.; Witter, D. J.; Belvedere, S. J. Med. Chem. 2003, 46, 5097-
5116.
(9) (a) Isolation: Nakao, Y.; Yoshida, S.; Matsunaga, S.; Shindoh, N.; Terada,
Y.; Nagai, K.; Yamashita, J. K.; Ganesan, A.; van Soest, R. W. M.; Fusetani,
N. Angew. Chem., Int. Ed. 2006, 45, 7553-7557. (b) Synthesis: Izzo, I.;
Maulucci, N.; Bifulco, G.; De Riccardis, F. Angew. Chem., Int. Ed. 2006,
45, 7557-7560.
(14) Closse, A.; Huguenin, R. HelV. Chim. Acta 1974, 57, 533-545.
(15) Pringle, R. B. Plant Physiol. 1970, 46, 45-49.
9
10.1021/ja0686256 CCC: $37.00 © 2007 American Chemical Society
J. AM. CHEM. SOC. 2007, 129, 3007-3012
3007