TABLE 1. Mukaiyama-Aldol Reaction Catalyzed by FeII Salt:
Effect of Solvents and Ligands
Iron(II) and Zinc(II) Complexes with Designed
pybox Ligand for Asymmetric Aqueous
Mukaiyama-Aldol Reactions
Joanna Jankowska, Joanna Paradowska, Bartosz Rakiel,
and Jacek Mlynarski*
Institute of Organic Chemistry, Polish Academy of Sciences,
Kasprzaka 44/52, 01-224 Warsaw, Poland
ReceiVed October 17, 2006
entry
solvent
ligand yield (%)a (syn/anti) ee syn (%)b
1
2
3
4
5
6
7
8
9
EtOH-H2O(10%)
EtOH-H2O(20%)
EtOH
EtOH-H2O(10%)
EtOH-H2O(20%)
EtOH-H2O(10%)
EtOH-H2O(10%)
EtOH-H2O(10%)
EtOH-H2O(10%)
1
1
1
2a
2a
3a
2b
3b
4d
63 (93/7)
60 (95/5)
30 (81/19)
70 (91/9)
65 (85/15)
65 (9/1)
62 (96/4)
75 (92/8)
82 (92/8)
40 (S,S)c
62 (S,S)
40 (S,S)
68 (R,R)
58 (R,R)
27 (S,S)
38 (R,R)
70 (S,S)
rac
a Isolated yield after silica gel chromatography. b Determined by HPLC
analysis using Chiralpak AD-H column. c The absolute configuration of the
enol 7a was determined by comparison of the HPLC analysis with literature
data in ref 9. d Ph-pybox.
An iron(II) complex with a hindered hydroxyethyl-pybox (he-
pybox) ligand shows improved catalytic activity and enan-
tioselectivity for asymmetric Mukaiyama-aldol reactions in
aqueous media. This water-stable chiral Lewis acid promotes
condensation of aromatic silyl enol ethers with a range of
aldehydes with good yields, excellent syn-diastereoselectivity
and up to 92% ee. The combination of the same ligand with
ZnII salt is also demonstrated as a remarkably efficient and
water-compatible chiral Lewis acid.
The synthesis of enantiopure molecules via aldol-type reac-
tions constitutes another interesting problem,4 and the develop-
ment of efficient aldol methods in aqueous solvents is an
intensively investigated topic nowadays.5 The Mukaiyama-aldol
reaction in aqueous media has also been a subject of current
importance.6 Only a few catalysts containing copper,7 lead,8
praseodymium,9 or gallium10 have been used in their enanti-
oselective variants. Recently, excellent examples of the hy-
droxymethylation of silicon enolates using scandium-11 and
bismuth-based12 Lewis acids have been reported.
The scope and limitation of this reaction is still, however,
not fully recognized. Attaining high enantioselectivity in aldol
Organic reactions in which water is used as a solvent or
cosolvent have attracted a great deal of attention recently
because of the unique properties of water and its key role as a
solvent for green chemistry.1 Although various kinds of reactions
have been developed in aqueous solvents recently,2 asymmetric
catalysis promoted by chiral Lewis acids in such media is still
at an initial stage mostly because of the water incompatibility
of known catalysts.3 Moreover, enantioselective versions of
Lewis acid mediated reactions in aqueous solvents are difficult
to achieve because competitive ligand exchange between a chiral
ligand and water molecules easily occurs, and this affects
enantioselectivity.
(4) (a) Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH:
Weinheim, 2004. (b) Machajewski, T. D.; Wong, C.-H. Angew. Chem., Int.
Ed. 2000, 39, 1352.. (c) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem.
Soc. ReV. 2004, 33, 65.
(5) (a) Fernandez-Lopez, R.; Kofoed, J.; Machuqueiro, M.; Darbre, T.
Eur. J. Org. Chem. 2005, 5268. (b) Hayashi, Y.; Sumiya, T.; Takahashi,
J.; Gotoh, H.; Urushima, T.; Shoji, M. Angew. Chem., Int. Ed. 2006, 45,
958. (c) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.;
Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 734.
(6) (a) Kobayashi, S.; Hachiya, I. J. Org. Chem. 1994, 59, 3590. (b)
Kobayashi, S.; Nagayama, S.; Busujima, T. J. Am. Chem. Soc. 1998, 120,
8287. (c) Mun˜oz-Mun˜iz, O.; Quintanar-Audelo, M.; Juaristi, E. J. Org.
Chem. 2003, 68, 1622.
(7) Kobayashi, S.; Nagayama, S.; Busujima, T. Tetrahedron 1999, 55,
8739.
(8) Nagayama, S.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 11531.
(9) Hamada, T. Manabe, K.; Ishikawa, S.; Nagayama, S.; Shiro, M.;
Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 2989.
(10) Li, H.-J.; Tian, H.-Y.; Wu, Y.-Ch.; Chen, Y.-J.; Liu, L.; Wang, D.;
Li, Ch.-J. AdV. Synth. Catal. 2005, 347, 1247.
(11) Ishikawa, S.; Hamada, T.; Manabe, K.; Kobayashi, S. J. Am. Chem.
Soc. 2004, 126, 12236.
(1) Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie Academic
& Professional: London, 1998. (b) Li, Ch.-J.; Chan, T.-H. Organic
Reactions in Aqueous Media; John Wiley & Sons: New York, 1997.
(2) (a) Lindstro¨m, U. M. Chem. ReV. 2002, 102, 2751. (b) Sinou, D.
AdV. Synth. Catal. 2002, 344, 221. (c) Lindstro¨m, U. M.; Andersson, F.
Angew. Chem., Int. Ed. 2006, 45, 548. (d) Pirrung, M. C. Chem. Eur. J.
2006, 12, 1312.; (e) Li, Ch.-J.; Chen, L. Chem. Soc. ReV. 2006, 35, 68.
(3) (a) Manabe, K., Kobayashi, S. Chem. Eur. J. 2002, 8, 4095. (b)
Kobayashi, S.; Manabe, K. Acc. Chem. Res. 2002, 35, 209. (c) Kobayashi,
S.; Ogawa, C. Chem. Eur. J. 2006, 12, 5954.
(12) Kobayashi, S.; Ogino, T.; Shimizu, H.; Ishikawa, S.; Hamada, T.;
Manabe, K. Org. Lett. 2005, 7, 4729.
10.1021/jo0621470 CCC: $37.00 © 2007 American Chemical Society
Published on Web 02/22/2007
2228
J. Org. Chem. 2007, 72, 2228-2231