C O M M U N I C A T I O N S
this reaction provides 1,1,2,4-tetrasubstituted furans in high yields
and acceptable diastereoselectivities (eq 2). Preliminary results also
indicate that a sequential one-pot three-component reaction between
1 and two aldehydes is possible.14
allylboronate 1 and the crotylboronates 12. These stable bimetallic
reagents add onto a wide range of aldehydes to afford a direct access
to hydroxyl-functionalized allylic silanes in very high E/Z selectivity
and excellent enantioselectivity. The use of the Lewis acid-catalyzed
allylboration manifold was key to the overall selectivity of this
process. Through the hydroxyl-functionalized allylsilane products,
reagents 1 and 12 can be exploited in chemodivergent syntheses
of various compound classes such as propionate units, polysubsti-
tuted furans, vinylcyclopropanes, and larger carbocycles. Other
transformations of allylic silanes such as oxidations5b and Pd-
catalyzed reactions16 can be envisaged. Thus, reagents 1 and 12
are expected to find multiple applications in natural product
synthesis and diversity-oriented synthesis.
Transformation of the hydroxyl group of products 3 into a triflate
triggers, upon warming, the formation of vinylcyclopropanes in high
enantio- and diastereoselectivity (eq 3).12 These vinylcyclopropanes
are highly valued synthetic intermediates.15
Acknowledgment. This work was funded by the Natural
Sciences and Engineering Research Council (NSERC) of Canada,
and the University of Alberta. F.P. thanks the Alberta Ingenuity
Foundation for a Graduate Scholarship. We thank Eric Pelletier
for help with HPLC analyses, and Dr. Robert McDonald for the
X-ray crystallographic analysis of compound 20.14
Supporting Information Available: Full experimental details, a
proof of absolute stereochemistry (on compound 18), additional
examples, and NMR spectral reproductions for new compounds. This
The Z and E crotyl reagents 12 were prepared in high yields
from the corresponding 2-propenylboronic esters.14 Their addition
onto aldehydes afforded the syn propionate products 13-15 and
anti diastereomers 16-18 in high yields and high selectivity (eqs
4 and 5). These adducts undergo the same reactions as allylsilanes
3 to form the corresponding methylated furans and cyclopropanes.14
References
(1) For examples, see: (a) Roush, W. R.; Grover, P. T. Tetrahedron Lett.
1990, 31, 7567-7570. (b) Barrett, A. G. M.; Malecha, J. W. J. Org. Chem.
1991, 56, 5243-5245. (c) Roush, W. R.; Grover, P. T. Tetrahedron 1992,
48, 1981-1998. (d) Hunt, J. A.; Roush, W. R. J. Org. Chem. 1997, 62,
1112-1124. (e) Roush, W. R.; Pinchuk, A. N.; Micalizio, G. C.
Tetrahedron Lett. 2000, 41, 9413-9417. (f) Flamme, E. M.; Roush, W.
R. J. Am. Chem. Soc. 2002, 124, 13644-13645.
(2) Barrett, A. G. M.; Braddock, D. C.; de Koning, P. D.; White, A. J. P.;
Williams, D. J. J. Org. Chem. 2000, 65, 375-380.
(3) For racemic Si/Si reagents of type III, see: (a) Smitrovich, J. H.; Woerpel,
K. A. Synthesis 2002, 2778-2785. (b) Sarkar, T. K.; Haque, S. A.;
Basak, A. Angew. Chem., Int. Ed. 2004, 43, 1417-1419. For two ex-
amples of optically pure reagents, which were prepared in several steps,
see: (c) Fleming, I.; Ghosh, S. K. J. Chem. Soc., Perkin Trans. 1 1998,
2733-2738. (d) Peng, Z.-H.; Woerpel, K. A. Org. Lett. 2001, 3, 675-
678.
(4) Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry;
Otera,J.,Ed.;Wiley-VCH: Weinheim,Germany,2000;Chapter10,pp299-402.
(5) (a) Masse, C. E.; Panek, J. S. Chem. ReV. 1995, 95, 1293-1316. (b)
Fleming, I.; Barbero, A.; Walter, D. Chem. ReV. 1997, 97, 2063-2192.
(6) Matteson, D. S. Tetrahedron 1998, 54, 10555-10606.
(7) The uncatalyzed reaction at 25 °C gives a ca. 3:1 ratio favoring the Z
isomer. The use of stoichiometric BF3 was necessary for a high E/Z ratio.
(8) (a) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586-
11587. (b) Ishiyama, T.; Ahiko, T.-a.; Miyaura, N. J. Am. Chem. Soc.
2002, 124, 12414-12415. (c) Lachance, H.; Lu, X.; Gravel, M.; Hall, D.
G. J. Am. Chem. Soc. 2003, 125, 10160-10161. (d) Gravel, M.; Lachance,
H.; Lu, X.; Hall, D. G. Synthesis 2004, 1290-1302.
The use of dicarbonyl substrates can provide several opportunities
for accessing carbocycles and other ring systems. For example,
reagents 1 and (Z)-12 add onto ketoaldehydes to give the oxabicyclic
products 19 and 20 via a double-allylation cascade (eqs 6 and 7).
(9) (a) Hoffmann, R. W. Pure Appl. Chem. 1988, 60, 123-130. (b) Hoffmann,
R. W.; Neil, G.; Schlapbach, A. Pure Appl. Chem. 1990, 62, 1993-1998.
(10) Carosi, L.; Lachance, H.; Hall, D. G. Tetrahedron Lett. 2005, 46, 8981-
8985.
(11) Rauniyar, V.; Hall, D. G. J. Am. Chem. Soc. 2004, 126, 4518-4519.
(12) Taylor, R. E.; Engelhardt, F. C.; Schmitt, M. J.; Yuan, H. J. Am. Chem.
Soc. 2001, 123, 2964-2969.
(13) (a) Mohr, P. Tetrahedron Lett. 1993, 34, 6251-6254. (b) Cassidy, J. H.;
Marsden, S. P.; Stemp, G. Synlett 1997, 1411-1413. (c) Meyer, C.; Cossy,
J. Tetrahedron Lett. 1997, 38, 7861-7864.
(14) See Supporting Information for details and additional examples.
(15) Reissig, H.-U.; Zimmer, R. Chem. ReV. 2003, 103, 1151-1196.
(16) Macsa´ri, I.; Szabo´, K. Tetrahedron Lett. 2000, 41, 1119-1122.
In summary, we have disclosed a new family of simple and
efficient double-allylation reagents: the R-trimethylsilylmethyl
JA068985T
9
J. AM. CHEM. SOC. VOL. 129, NO. 11, 2007 3071