C O M M U N I C A T I O N S
Scheme 3 a
Supporting Information Available: Experimental details and
spectroscopic data (PDF). This material is available free of charge via
References
(1) For a recent review, see: Hale, K. J.; Hummersone, M. G.; Manaviazar,
S.; Frigerio, M. Nat. Prod. Rep. 2002, 19, 413.
(2) (a) El-Rayes, B. F.; Gadgeel, S.; Shields, A. F.; Manza, S.; Lorusso, P.;
Philip, P. A. Clin. Cancer Res. 2006, 12, 7059. (b) Pagliaro, L. C.; Perez,
C. A.; Tu, S.-M.; Daliani, D. D. Urol. Oncol.: Semin. Orig. InVest. 2006,
24, 487 and references therein.
(3) For recent examples, see: (a) Wender, P. A.; Horan, J. C.; Verma, V. A.
Org. Lett. 2006, 8, 5299. (b) Wender, P. A.; Horan, J. C. Org. Lett. 2006,
8, 4581. (c) Keck, G. E.; Welch, D. S.; Vivian, P. K. Org. Lett. 2006, 8,
3667. (d) Keck, G. E.; Truong, A. P. Org. Lett. 2005, 7, 2153. (e) Cho,
C.-W.; Krische, M. J. Org. Lett. 2006, 8, 891. (f) Ball, M.; Bradshaw, B.
J.; Dumeunier, R.; Gregson, T. J.; MacCormick, S.; Omori, H.; Thomas,
E. J. Tetrahedron Lett. 2006, 47, 2223. (g) Voight, E. A.; Seradj, H.;
Roethle, P. A.; Burke, S. D. Org. Lett. 2004, 6, 4045.
(4) Kageyama, M.; Tamura, T.; Nantz, M. H.; Roberts, J. C.; Somfai, P.;
Whritenour, D. C.; Masamune, S. J. Am. Chem. Soc. 1990, 112, 7407.
(5) (a) Evans, D. A.; Carter, P. H.; Carreira, E. M.; Prunet, J. A.; Charette,
A. B.; Lautens, M. Angew. Chem., Int. Ed. 1998, 37, 2354. (b) Evans, D.
A.; Carter, P. H.; Carreira, E. M.; Charette, A. B.; Prunet, J. A.; Lautens,
M. J. Am. Chem. Soc. 1999, 121, 7540.
(6) Ohmori, K.; Ogawa, Y.; Obitsu, T.; Ishikawa, Y.; Nishiyama, S.;
a Reagents and conditions: (a) n-BuLi, methyl propionate, BF3‚OEt2,
THF, -78 °C, 92%; (b) Pd(OAc)2, tris(2,6-dimethoxyphenyl)phosphine,
20, benzene, then Pd(O2CCF3)2, rt, 55%; (c) trifluoroperacetic acid,
Na2HPO4, CH2Cl2/CH3CN/CH3OH, 0 °C; (d) Dess-Martin oxidation; (e)
NaBH4, CeCl3‚7H2O, -30 °C; (f) Ac2O, pyridine, DMAP, CH2Cl2, rt, 45%
over four steps; (g) Et3N‚3HF, THF, rt, 54-77%; (h) Dess-Martin
oxidation, 94%; (i) CrCl2, CHI3, THF, rt, 26% (47% BRSM); (j) Pd(PPh3)4,
22, THF, rt, 68%; (k) AcOH/H2O (3:1); (l) TESCl, TEA, DMF, -35 to
-15 °C, 60% over two steps; (m) Et3N, DMAP, 2-methyl-6-nitrobenzoic
acid anhydride, CH2Cl2, 51%; (n) benzene, 50-80 °C, 17 mol % of
Grubbs-Hoveyda catalyst, 80%, 1:1 E:Z mixture; (o) PPTS, MeOH, rt,
36% of 1, 46% of 27.
Yamamura, S. Angew. Chem., Int. Ed. 2000, 39, 2290.
(7) Manaviazar, S.; Frigerio, M.; Bhatia, G. S.; Hummersone, M. G.; Aliev,
A. E.; Hale, K. J. Org. Lett. 2006, 8, 4477.
(8) Wender, P. A.; Baryza, J. L.; Bennett, C. E.; Bi, F. C.; Brenner, S. E.;
Clarke, M. O.; Horan, J. C.; Kan, C.; Lacote, E.; Lippa, B.; Nell, P. G.;
Turner, T. M. J. Am. Chem. Soc. 2002, 124, 13648.
(9) Trost, B. M.; Yang, H.; Wuitschik, G. Org. Lett. 2005, 7, 4761.
(10) Trost, B. M.; Frontier, A. J. J. Am. Chem. Soc. 2000, 122, 11727.
(11) The Julia olefination, a well-established method in the previous three total
syntheses for the construction of the macrocycle, is unlikely to work for
our system due to the basicity of this procedure; see ref 5b.
(12) For a recent review, see: Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew.
Chem., Int. Ed. 2005, 44, 4490.
ducing a terminal olefin via a Takai olefination22 and a Negishi
cross-coupling,23 the resulting triene 24 was hydrolyzed and
monosilylated to give the southern hemisphere 3, which was then
coupled with 2 in the presence of 2-methyl-6-nitrobenzoic acid
anhydride24 to give 25. Gratifyingly, treatment of 25 with Grubbs-
Hoveyda catalyst25 gave 31-membered lactone 26 as an inseparable
1:1 E:Z mixture in 80% yield.26 Final deprotection gave triols 1
and 27, which were separated by preparative TLC.
The compounds 1 and 27 were tested against several cancer cell
lines. Particularly impressive and interesting is the ability of 1 to
inhibit the growth of NCI-ADRsa breast cancer cell line with added
multi-drug-resistant pumpsswith an IC50 of 123 nM.27
(13) Our efforts to construct the bryostatin macrocycle via a RCM reaction
met with no success; details will be reported in full account of our work.
For another RCM approach by Thomas and co-workers, see ref 3f.
(14) (a) Shiina, I.; Shibata, J.; Ibuka, R.; Imai, Y.; Mukaiyama, T. Bull. Chem.
Soc. Jpn. 2001, 74, 113. (b) Blakemore, P. R.; Browder, C. C.; Hong, J.;
Lincoln, C. M.; Nagornyy, P. A.; Robarge, L. A.; Wardrop, D. J.; White,
J. D. J. Org. Chem. 2005, 70, 5449.
(15) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988,
110, 3560.
(16) Otera, J.; Yano, T.; Kawabata, A.; Nozaki, H. Tetrahedron Lett. 1986,
27, 2383.
(17) Roy, R.; Rey, A. W.; Charron, M.; Molino, R. Chem. Commun. 1989,
1308.
(18) Synthesized in three steps from 3-methyl-2-butanone. See Supporting
Information for details.
In summary, a ring-expanded bryostatin analogue 1 with potent
antitumor activity against the NCI-ADR cancer cell line was
synthesized. Notable features include a Ru-catalyzed tandem
tetrahydropyran formation, a Pd-catalyzed tandem dihydropyran
formation, and a ring-closing metathesis. The chemistry reported
herein should be applicable to future syntheses of the bryostatins
and their analogues.
(19) This reaction is reproducible at 0.3 mmol scale. For large-scale reactions,
a two-step procedure of Pd(OAc)2-catalyzed cross-coupling of 17 and 18
to form a ene-yne adduct followed by PdCl2(CH3CN)2-catalyzed cyclo-
isomerization was performed. See Supporting Information for details.
(20) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.
(21) Luche, J. L.; Rodriguez-Hahn, L.; Crabbe, P. Chem. Commun. 1978, 601.
(22) Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408.
(23) Negishi, E. Acc. Chem. Res. 1982, 15, 340.
(24) Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. J. Org. Chem. 2004,
69, 1822.
Acknowledgment. We thank NIH General Medical Science
(GM 13598), NSF, and fellowships from Amgen (H.Y.), Bristol-
Myers Squibb (H.Y.), the Alexander-von-Humboldt foundation
(O.R.T.), NIH (A.J.F.), NSF (C.S.B.), and ARCS (C.S.B.) for their
generous financial support. We thank Dr. Hugo Menzella from
Kosan Biosciences for testing the biological activities of compounds
1 and 27, and Dr. Yong Li for helpful discussions. We thank
Professor Deryn Fogg, Jay Conrad, Professor Robert Grubbs, and
Dr. Tobias Ritter for providing samples of catalysts and Johnson
Matthey for a gift of Pd salts. Mass spectra were provided by the
Mass Spectrometry Regional Center of the UCSF, supported by
the NIH Division of Research Resources.
(25) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem.
Soc. 2000, 122, 8168.
(26) Under this and several other conditions, relay ring-closing metathesis
(RRCM) did not occur. For a leading reference on RRCM, see: Hoye, T.
R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.; Zhao, H. J. Am. Chem.
Soc. 2004, 126, 10210.
(27) Compound 27 is about 9-fold less active than 1 against NIC-ADR cell
line. Epothilone D and discodermolide display IC50 values of 10 and 240
nM, respectively, in the same assay; see: (a) Hearn, B. R.; Zhang, D.;
Li, Y.; Myles, D. C. Org. Lett. 2006, 8, 3057. (b) Shaw, S. J.; Sundermann,
K. F.; Burlingame, M. A.; Myles, D. C.; Freeze, B. S.; Xian, M.; Brouard,
I.; Smith, A. B., III. J. Am. Chem. Soc. 2005, 127, 6532.
JA067305J
9
J. AM. CHEM. SOC. VOL. 129, NO. 8, 2007 2207