Organic Letters
Letter
(d) Chen, Y.-H.; Qi, L.-W.; Fang, F.; Tan, B. Angew. Chem., Int. Ed.
2017, 56, 16308−16312. (e) Shi, Y.; Zhang, L.; Lan, J.; Zhang, M.;
Zhou, F.; Wei, W.; You, J. Angew. Chem., Int. Ed. 2018, 57, 9108−
9112.
(6) For recent reviews of the synthesis of biaryls by direct arylation,
see: (a) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int.
Ed. 2009, 48, 9792−9826. (b) Ashenhurst, J. A. Chem. Soc. Rev. 2010,
39, 540−548. (c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111,
1215−1292. (d) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.;
Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236−10254.
(e) Santoro, S.; Kozhushkov, S.; Ackermann, L.; Vaccaro, L. Green
Chem. 2016, 18, 3471−3493. (f) Yang, Y.; Lan, J.; You, J. Chem. Rev.
2017, 117, 8787−8863.
(7) For recent reports on phenol cross-coupling, see: (a) Lee, Y. E.;
Cao, T.; Torruellas, C.; Kozlowski, M. C. J. Am. Chem. Soc. 2014, 136,
6782−6785. (b) Libman, A.; Shalit, H.; Vainer, Y.; Narute, S.;
Kozuch, S.; Pappo, D. J. Am. Chem. Soc. 2015, 137, 11453−11460.
(c) Morimoto, K.; Sakamoto, K.; Ohshika, T.; Dohi, T.; Kita, Y.
Angew. Chem., Int. Ed. 2016, 55, 3652−3656. (d) Wiebe, A.;
Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R.
Angew. Chem., Int. Ed. 2016, 55, 11801−11805. (e) Shalit, H.;
Libman, A.; Pappo, D. J. Am. Chem. Soc. 2017, 139, 13404−13413.
(f) Dahms, B.; Kohlpaintner, P. J.; Wiebe, A.; Breinbauer, R.;
Schollmeyer, D.; Waldvogel, S. R. Chem. - Eur. J. 2019, 25, 2713−
2716.
(8) For selected examples of asymmetric catalysis, see: (a) Narute,
S.; Parnes, R.; Toste, F. D.; Pappo, D. J. Am. Chem. Soc. 2016, 138,
16553−16560. (b) Kang, H.; Lee, Y. E.; Reddy, P. V. G.; Dey, S.;
Allen, S. E.; Niederer, K. A.; Sung, P.; Hewitt, K.; Torruellas, C.;
Herling, M. R.; Kozlowski, M. C. Org. Lett. 2017, 19, 5505−5508.
(c) Kang, H.; Herling, M. R.; Niederer, K. A.; Lee, Y. E.; Vasu
Govardhana Reddy, P.; Dey, S.; Allen, S. E.; Sung, P.; Hewitt, K.;
Torruellas, C.; Kim, G. J.; Kozlowski, M. C. J. Org. Chem. 2018, 83,
14362−14384. (d) Moustafa, G. A. I.; Oki, Y.; Akai, S. Angew. Chem.,
Commun. 2012, 48, 10704−10714. (c) Wang, D.; Izawa, Y.; Stahl, S.
S. J. Am. Chem. Soc. 2014, 136, 9914−9917.
(16) For reviews of heterogeneous Pd-catalyzed couplings, see:
(a) Seki, M. Synthesis 2006, 2006, 2975−2992. (b) Pagliaro, M.;
́
̀
Pandarus, V.; Ciriminna, R.; Beland, F.; Demma Cara, P.
ChemCatChem 2012, 4, 432−445. (c) Liu, L.; Corma, A. Chem.
Rev. 2018, 118, 4981−5079.
(17) Effenberger, F.; Fischer, P.; Schoeller, W. W.; Stohrer, W.-D.
Tetrahedron 1978, 34, 2409−2417.
(18) The calculated HOMO energy levels were −4.97 eV for 4 and
(19) To confirm the heterogeneous character, we conducted a
simple leaching test. The Pd catalyst was filtered (membrane filter,
0.45 mm) after the reaction mixture was stirred for 1 h. Then 4a was
added to the filtrate, and the reaction was conducted under the
conditions described in Table 1, entry 9. However, no reaction
occurred at all in this experiment, indicating that the reaction was
catalyzed by heterogeneous metal.
̌
̌
̌
́
́
̌
(20) (a) Smrcina, M.; Vyskocil, S.; Maca, B.; Polasek, M.; Claxton,
̌
́
T. A.; Abbott, A. P.; Kocovsky, P. J. Org. Chem. 1994, 59, 2156−2163.
(b) Saitoh, T.; Yoshida, S.; Ichikawa, J. J. Org. Chem. 2006, 71, 6414−
6419.
(21) In a previous report,14a the generation of radical species was
confirmed by ESR experiments. Thus, we suppose that the
mechanism involving the radical cation may be plausible.
(22) Huang, H.; Zong, H.; Bian, G.; Song, L. J. Org. Chem. 2012, 77,
10427−10434.
̈
Int. Ed. 2018, 57, 10278−10282. (e) Sako, M.; Aoki, T.; Zumbragel,
̈
N.; Schober, L.; Groger, H.; Takizawa, S.; Sasai, H. J. Org. Chem.
2019, 84, 1580−1587.
̌
̌
̌
̌
́
(9) (a) Vyskocil, S.; Smrcina, M.; Lorenc, M.; Tislerova, I.; Brooks,
R. D.; Kulagowski, J. J.; Langer, V.; Farrugia, L. J.; Kocovsky, P. J. Org.
Chem. 2001, 66, 1359−1365. (b) Kocovsky, P.; Vyskocil, S.; Smrcina,
M. Chem. Rev. 2003, 103, 3213−3246. (c) Li, X.-L.; Huang, J.-H.;
Yang, L.-M. Org. Lett. 2011, 13, 4950−4953.
̌
́
̌
̌
́
̌
̌
(10) For reports on aniline−phenol cross-coupling, see: (a) Elsler,
B.; Wiebe, A.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel,
S. R. Chem. - Eur. J. 2015, 21, 12321−12325. (b) Berkessa, S. C.;
Clarke, Z. J. F.; Fotie, J.; Bohle, D. S.; Grimm, C. C. Tetrahedron Lett.
2016, 57, 1613−1618.
(11) For reports on anilide−phenol cross-coupling, see: (a) Ito, M.;
Kubo, H.; Itani, I.; Morimoto, K.; Dohi, T.; Kita, Y. J. Am. Chem. Soc.
2013, 135, 14078−14081. (b) Bering, L.; Vogt, M.; Paulussen, F. M.;
Antonchick, A. P. Org. Lett. 2018, 20, 4077−4080.
(12) Schulz, L.; Enders, M.; Elsler, B.; Schollmeyer, D.; Dyballa, K.
M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017, 56,
4877−4881.
(13) (a) Matsumoto, K.; Tachikawa, S.; Hashimoto, N.; Nakano, R.;
Yoshida, M.; Shindo, M. J. Org. Chem. 2017, 82, 4305−4316.
(b) Shindo, M.; Matsumoto, K. In New Horizons of Process Chemistry:
Scalable Reactions and Technologies; Tomioka, K., Shioiri, T., Sajiki, H.,
Eds.; Springer: Singapore, 2017; pp 11−27. (c) Matsumoto, K.
Yakugaku Zasshi 2018, 138, 1353−1361. (d) Matsumoto, K.; Nakano,
R.; Hirokane, T.; Yoshida, M. Tetrahedron Lett. 2019, 60, 975−978.
(14) (a) Matsumoto, K.; Dougomori, K.; Tachikawa, S.; Ishii, T.;
Shindo, M. Org. Lett. 2014, 16, 4754−4757. (b) Matsumoto, K.;
Yoshida, M.; Shindo, M. Angew. Chem., Int. Ed. 2016, 55, 5272−5276.
(c) Fujimoto, S.; Matsumoto, K.; Shindo, M. Adv. Synth. Catal. 2016,
358, 3057−3061. (d) Fujimoto, S.; Matsumoto, K.; Iwata, T.; Shindo,
M. Tetrahedron Lett. 2017, 58, 973−976.
(15) (a) Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef,
B. Org. Lett. 2007, 9, 3137−3139. (b) Hirano, K.; Miura, M. Chem.
E
Org. Lett. XXXX, XXX, XXX−XXX