4492
M. Lakshmi Kantam et al. / Tetrahedron Letters 52 (2011) 4490–4493
Table 3 (continued)
Entry
Het-Br
R
Product
Yeild (%)b
Br
Br
3
4
5
C10H7
84
N
N
O
nBu-CO2
60
73
O
N
N
Br
H3C
4-Me-C6H4
S
S
S
Br
Cl
6
4-Cl-C6H4
72
85
S
Br
7
C10H7
N
N
a
Reactions and conditions: heteroaryl halide (1 mmol), olefin (2 mmol), Pd(CH3CN)2Cl2 (4 mol %) and 2.5 mL DMF at 140 °C for 20 h.
Isolated yield.
b
the reaction of 3-bromoquinoline and 3-bromofuran with styrene,
where the products were formed in essentially good yields (entries
5 and 6). Furthermore, it was found that the reaction also pro-
ceeded nicely with the electron-rich and electro-deficient 3-
bromohetero arenes, such as 5-methoxy-3-bromopyridine and 2-
nitro-5-bromopyridine with styrene in 76% and 86% yield, respec-
tively (entries 7 and 8), whereas the reaction with electron-rich 5-
methyl-2-bromopyridine gave the product in only 5% yield under
the same reaction conditions (entry 9). No product was formed
when 2- or 3-chlorohetero arenes were used under the above opti-
mized conditions.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581–584; (b)
Heck, R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320–2322; (c) Beletskaya, I.
P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066. and references therein..
2. (a) Brase, S.; De Meijere, A. In Metal-catalyzed cross-coupling reactions; De
Meijere, A., Diederich, F., Eds.; second ed: Weinheim, 2004; (b) Step-Growth
Polymers for High-Performance Materials; Hedrick, J. L., Labadie, J. W., Eds.; ACS
Symposium Series 624; American Chemical Society: Washington, DC, 1996;
Chapters 1, 2 and 4.; (c) Goa, K. L.; Wagstaff, A. J. Drugs 1996, 51, 820–845; (d)
Birkenhager, W. H.; de Leeuw, P. W. J. Hypertens. 1999, 17, 873–881; (e) Hberli,
A.; Leumann, C. J. Org. Lett. 2001, 3, 489–492; (f) Nicolaou, K. C.; Bulger, P. G.;
Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442–4489; (g) Cacchi, S.; Fabrizi, G.
Chem. Rev. 2005, 105, 2873–2920.
3. (a) Ben-David, Y.; Portnoy, M.; Gozin, M.; Milstein, D. Organometallics 1992, 11,
1995–1996; (b) Littke, A. F.; Fu, G. C. J. Org. Chem. 1999, 64, 10–11; (c)
Shaughnessy, K. H.; Kim, P.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 2123–
2132; (d) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 6989–7000.
4. (a) Herrmann, W. A.; Brossmer, C.; Ofele, K.; Reisinger, C.-P.; Priermeier, T.;
Beller, M.; Fisher, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 1844–1848; (b)
Gruber, A. S.; Zim, D. Z.; Ebeling, G.; Monteriro, A. L.; Dupont, J. Org. Lett. 2000,
2, 1287–1290; (c) Gibson, S.; Foster, D. F.; Eastam, G. R.; Tooze, R. P.; Cole-
Hamilton, D. J. Chem. Commun. 2001, 779–780; (d) Consorti, C. S.; Zanini, M. L.;
Leal, S.; Ebeling, G.; Dupont, J. Org. Lett. 2003, 5, 983–986; (e) Frey, G. D.;
Reisinger, C.-P.; Herdtweck, E.; Herrmann, W. A. J. Organemet. Chem. 2005, 690,
3193–3201; (f) Peng, K.-F.; Chen, M.-T.; Huang, C.-A.; Chen, C.-T. Eur. J. Inorg.
Chem. 2008, 2463–2470.
Next, we studied the application of this new method to various
styrenes and n-butyl acrylate and the results are shown in Table 3.
The reaction of
p–electron deficient heterocycles, such as 3-bro-
mopyridine and 3-bromoquinoline with different styrenes such
as 4-methylstyrene, 4-chlorostyrene, and 2-naphthylstyrene affor-
ded good yields in the range of 80–85% (entries 1–3 and 7). In the
case of activated olefin n-butyl acrylate the reaction of 3-bromo-
pyridine gave a moderate yield of the desired product (entry 4).
Finally, the reaction with the
p-electron excessive heterocycle,
3-bromothiophene was performed with different styrenes and
the yields obtained were slightly lower than the
cient heterocycles (entries 5 and 6).
p-electron defi-
In conclusion, we have developed a more convenient and eco-
nomical method for the Heck reaction with heteroaryl halides
using Pd(CH3CN)2Cl2 under both the ligand and base-free condi-
tions. This method is applicable to a wide range of heteroaryl ha-
lides. Since this method is developed under neutral conditions in
the absence of ligand and base, it should find practical and indus-
trial usage with a wide functional group tolerance for the synthesis
of biologically active heteroaryl derivatives.
5. (a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100,
39–92; (b) Yen, S. K.; Koh, L. L.; Hahn, F. E.; Huynh, H. V.; Hor, T. S. A.
Organometallics 2006, 25, 5105–5112; (c) Ye, J.; Chen, W.; Wang, D. Daltan
Trans. 2008, 4015–4022; (d) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41,
1440–1449; (e) Zhang, X.; Xi, Z.; Liu, A.; Chen, W. Organometallics 2008, 27,
4401–4406; (f) Meyer, D.; Taige, M. A.; Zeller, A.; Hohlfeld, K.; Ahrens, S.;
Strassner, T. Organometallics 2009, 28, 2142–2149.
6. (a) Herrmann, W. A.; Ofele, K.; Schneider, S. K.; Herdtweck, E.; Hoffmann, S. D.
Angew. Chem., Int. Ed. 2006, 45, 3859–3862; (b) Wass, D. F.; Haddow, M. F.; Hey,
T. W.; Guy Orpen, A.; Russell, C. A.; Wingad, R. L.; Green, M. Chem. Commun.
2007, 2704–2706; (c) Yao, Q.; Zabawa, M.; Woo, J.; Zheng, C. J. Am. Chem. Soc.
2007, 129, 3088–3089.
Acknowledgments
PVR thanks CSIR, New Delhi for the award of fellowship.
PS thank RMIT-IICT joint research centre for the financial
support.
7. (a) Yang, D.; Chen, Y. C.; Zhu, N. Y. Org. Lett. 2004, 6, 1577–1580; (b) Mino, T.;
Shirae, Y.; Sasai, Y.; Sakamoto, M.; Fujita, T. J. Org. Chem. 2006, 71, 6834–6839;