that involves a carbonyl-containing electrophile and would
deliver the alkyl group as a nucleophile is illustrated in eq
1.13 Catalytic asymmetric allylic alkylation14,15 of R,â-
unsaturated esters, bearing a trisubstituted olefin and a
leaving group at the γ position, may afford the desired all-
carbon stereogenic center in the optically enriched or pure
form. Importantly, this strategy provides access to optically
enriched acyclic products that can be easily modified in a
variety of ways as a result of the presence of the carboxylic
ester and the terminal olefin. Herein, we disclose the results
of our studies toward the development of the catalytic
asymmetric protocol summarized in eq 1.
Next, to identify a more efficient and selective catalyst,
we carried out ligand screening studies, taking advantage of
the facile modularity16 of the peptide-based class of chiral
Schiff bases. Approximately 90 ligand candidates were
synthesized on solid support,17 cleaved, and tested for their
ability to promote the Cu-catalyzed enantioselective alkyla-
tion depicted in Scheme 1. These investigations led us to
identify 4a and 4b as the more attractive alternatives to 3.
Thus, as illustrated in entries 1-2 of Table 1, Cu-catalyzed
Table 1. Enantioselective Cu-Catalyzed Allylic Alkylations
We initiated our studies by investigating the feasibility of
the proposed catalytic asymmetric alkylation under the
conditions outlined recently by us for enantioselective
additions of alkylzincs to the derived allylic phosphates
bearing a disubstituted olefin (R2 ) H in eq 1). As illustrated
in Scheme 1, we established that in the presence of 10 mol
yielda reb eec
entry R1
(alkyl)2Zn
ligand prod (%)
(%) (%)
1
2
3
4
5
6
7
8
Me 1a Et2Zn
4a
4b
4a
4a
4b
4a
4a
4b
2
2
5
6
6
7
8
9
52d >98
90
87
88
77
77
46
Me 1a Et2Zn
43d >98
Me 1a [Me2CH(CH2)3]2Zn
Me 1a [AcO(CH2)4]2Zn
Me 1a [AcO(CH2)4]2Zn
Me 1a i-Pr2Zn
t-Bu 1b Et2Zn
t-Bu 1b [AcO(CH2)4]2Zn
80
78
78
90
79
77
>98
60
78
80
Scheme 1. Initial Studies on Cu-Catalyzed Allylic Alkylations
>98 >98
>98
83
a Isolated yields after silica gel chromatography; all reactions proceeded
to >98% conversion. b Determined by analysis of 400 MHz 1H NMR
spectra. c Determined by chiral GLC analysis of the derived carboxylic acid
(â-Dex column for entries 1-3 and 7) or conversion to the derived MPTA
ester followed by 400 MHz 1H NMR analysis. d Low yields due to product
volatility.
asymmetric alkylation of 1 with Et2Zn in the presence of 4a
and 4b leads to the formation of 2 in 90% and 87% ee,
respectively (>98% conversion and re with both chiral
ligands).
Additional data regarding Cu-catalyzed enantioselective
allylic alkylations of methyl ester 1a and tert-butyl ester 1b
are summarized in Table 1. Several features of these data
% of dipeptide Schiff base 3 and 5 mol % of (CuOTf)2‚
C6H6 unsaturated ester 1 undergoes efficient alkylation
(>98% conv) to afford 2, bearing the desired quaternary all-
carbon stereogenic center, in 83% ee and >98% re (regio-
isomeric excess; SN2′/SN2).
(6) Hayashi, T.; Tang, J.; Kato, K. Org. Lett. 1999, 1, 1487-1489.
(7) (a) Mermerian, A. H.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 4050-
4051. (b) Hills, I. D.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 3921-
3924.
(14) For related previous reports from these laboratories regarding
catalytic asymmetric allylic alkylations, see: (a) Luchaco-Cullis, C. A.;
Mizutani, H.; Murphy, K. E.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2001,
40, 1456-1460. (b) Kacprzynski, M. A.; Hoveyda, A. H. J. Am. Chem.
Soc. 2004, 126, 10676-10681. (c) Larsen, A. O.; Leu, W.; Nieto Overhuber,
C.; Campbell, J. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 11130-
11131. (d) Van Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda,
A. H. J. Am. Chem. Soc. 2005, 127, in press.
(8) Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 62-63.
(9) Sawamura, M.; Hamashima, H.; Ito, Y. J. Am. Chem. Soc. 1992,
114, 8295-8296.
(10) Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem. Soc. 2002,
124, 11240-11241.
(15) For representative catalytic asymmetric allylic alkylations (with hard
alkylmetals) reported by other laboratories, see: (a) Dubner, F.; Knochel,
P. Tetrahedron Lett. 2000, 41, 9233-9237. (b) Malda, H.; van Zijl, A. W.;
Arnold, L. A.; Feringa, B. L. Org. Lett. 2001, 3, 1169-1171. (c) Shi, W.-
J.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Zhou, Q.-L. Tetrahedron: Asymmetry
2003, 14, 3867-3872. (d) Karlstrom, A. S. E.; Huerta, F. F.; Meuzelaar,
G. J.; Backvall, J.-E. Synlett 2001, 923-926. (e) Tissot-Croset, K.; Polet,
D.; Alexakis, A. Angew. Chem., Int. Ed. 2004, 43, 2426-2428.
(16) For screening strategies and significant attributes of the amino acid-
based ligands, see: Hoveyda, A. H. In Handbook of Combinatorial
Chemistry; Nicolaou, K. C., Hanko, R., Hartwig, W., Eds.; Wiley-VCH:
Weinheim, 2002; pp 991-1016.
(11) Sasai, H.; Emori, E.; Arai, T.; Shibasaki, M. Tetrahedron Lett. 1996,
37, 5561-5564.
(12) For examples involving organic catalysts, see: (a) Dolling, U.-F.;
Davis, P.; Grabowski, E. J. J. J. Am. Chem. Soc. 1984, 106, 446-447
(alkylation). (b) Shaw, S. A.; Aleman, P.; Vedejs, E. J. Am. Chem. Soc.
2003, 125, 13368-13369 (acyl transfer). (c) Mase, N.; Tanaka, F.; Barbas,
C. F. Angew. Chem., Int. Ed. 2004, 43, 2420-2423 (aldol additions). (d)
Kerr, M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876-8877 (Stetter).
(13) For related catalytic asymmetric approaches leading to the formation
of tertiary carbon stereogenic sites R to carbonyls, see: (a) Luchaco-Cullis,
C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 8192-8193. (b)
Murphy, K. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 4690-4691.
(17) See the Supporting Information for details.
1256
Org. Lett., Vol. 7, No. 7, 2005