Synthesis of 10b(S)-Epipancratistatin from (+)-Narciclasine
Journal of Natural Products, 2007, Vol. 70, No. 3 421
287 (49.3), 258 (30), 222 (84), 165 (5), 115 (2.8); 1H NMR (300 MHz,
CDCl3) δ 6.95 (s, 1H), 6.08 (m, 2H), 5.69 (m, 1H), 5.5 (t, J ) 3.3 Hz,
1H), 5.38 (m, 2H), 4.0 (d, 1H), 3.3 (s, 1H), 2.33 (s, 3H), 2.16 (s, 3H),
1.99 (s, 3H), 1.97 (s, 3H), 1.95 (s, 3H); 13C NMR (100 MHz, CDCl3)
δ 169.9, 169.8, 169.1, 168.9, 168.7, 162.3, 152.5, 140.6, 137.5, 133.8,
112.9, 103.1(2C), 73.2, 72.9, 69.5, 69.0, 67.7, 56.9, 20.8, 20.7, 20.6,
20.5, 20.3; HRFAB calcd for C24H26NO14 [M + H]+, 552.1353; found
[M + H]+, 552.1365; anal. C 50.77%, H 4.80%, N 2.46%, calcd for
C24H25NO14‚H2O, C 50.62%, H 4.78%, N 2.46%.
Acknowledgment. We are very pleased to acknowledge most
helpful discussions concerning the radical reaction with the late (and
great) Professor Sir Derek H. R. Barton. For financial assistance we
acknowledge with thanks Grant R01 CA-90441-01-05 from the Division
of Cancer Treatment and Diagnosis, NCI, DHHS; Dr. Alec D. Keith,
The Arizona Disease Control Commision; The Robert B. Dalton
Endowment Fund; and Gary L. and Diane Tooker. In addition, we wish
to thank for technical assistance Drs. F. Hogan, J. Lieman, and V.
Mukku, as well as F. Cracienusccu, M. Dodson, Dr. R. K. Pettit, C.
Webber, and L. Williams.
10b(R),N,7-O-Methyloxalyl-1,2,3,4-tetra-O-acetylpancratistatin
(7b). To a solution of alcohol 4c (0.3 g, 0.5 mmol) in pyridine (3 mL)
was added methyl oxalyl chloride (0.5 mL, 5.4 mmol, 10.8 equiv).
The reaction mixture turned brown, and an immediate precipitate
separated. Pyridine (4 mL) was added, and the reaction mixture was
stirred at rt under argon for 6 h, whereupon TLC examination (9:1
DCM-CH3OH) indicated starting material had been consumed. The
reaction mixture was cooled and placed in an ice-water bath, ice-
water was added, and the resultant precipitate was collected. The
precipitate was washed with H2O, which removed the brown color.
The remaining white precipitate was dissolved in CH2Cl2, washed with
H2O (20 mL), and dried, and the solution was filtered and concentrated
to a white residue. The residue was dissolved in hexane (10 mL) and
acetone added until the product dissolved with heating. Crystallization
occurred overnight at 0 °C: 120.6 mg, 28.9%, mp 265 °C; [R]D -11.3
(c 1.04, CH2Cl2); Rf 0.81 (19:1 DCM-CH3OH); 1H NMR (500 MHz,
CDCl3) δ 7.38 (s, 1H), 6.57 (d, 1H), 6.20 (m, 2H), 5.74 (d, J ) 6.9
Hz, 1H), 5.30 (t, J ) 1.5 Hz, 1H), 5.22 (t, J ) 1.5 Hz, 1H), 5.05 (dd,
J ) 6.9 Hz, 1.8 Hz, 1H), 3.99 (s, 3H) 3.88 (s, 3H), 3.19 (s, 3H), 2.19
(s, 3H), 2.17 (s, 3H), 1.99 (s, 3H), 1.94 (s, 3H); 13C NMR (125 MHz,
CDCl3) δ 169.6, 169.0, 168.4, 167.7, 162.0, 161.0, 158.9, 156.8, 156.4,
155.3, 154.1, 152.8, 142.5, 133.3, 128.5, 114.9, 109.2, 102.3 (2C), 79.4,
67.8, 67.4, 67.1, 67.1, 54.0, 53.7, 53.0, 51.7, 30.9, 20.6, 20.5, 20.2;
EIMS m/z (%) 767 (M+, 13.3), 695 (18.9), 636 (25.2), 622 (100), 594
(28.7), 550 (44.8), 374 (27.9), 287 (35.7), 248 (41.9); anal. C 49.20%,
H 4.25%, N 2.02%, calcd for C31H29O22N, C 48.51%, H 3.81%, N
1.82%.
10b(S)-1,2,3,4-Tetra-O-acetylepipancratistatin (3c). To a solution
of methyloxalate (7b) (0.05 g, 0.065 mmol) in dry toluene (20 mL),
under argon at reflux, were added tributyltin hydride (150 mL, 8.57
equiv) and AIBN (20 mg). The reaction mixture was heated at reflux
for 2.5 h, and TLC (19:1, DCM-CH3OH) showed complete consump-
tion of starting material. The solution was concentrated to a white,
gelatinous solid, which crystallized from toluene-hexane to yield an
amorphous solid upon standing at 0 °C for 16 h. After washing with
hexane to remove tributyltin hydride and drying, the solid obtained
(32 mg) was found to consist mainly of acetate (3c), with four minor
impurities (one being pancratistatin tetraacetate by 1H NMR). The
purification of acetate (3c) proved difficult using standard silica gel
column chromatography techniques. However, purification of a small
quantity (7 mg) was accomplished via separation of the mixture using
References and Notes
(1) For the preceding part in this series, see Antineoplastic Agents 549:
Pinney, K. G.; Jelinek, C.; Edvardsen, K.; Chaplin, D. J.; Pettit, G.
R. Anticancer Agents Nat. Prod. 2005, 23-46.
(2) (a) Pettit, G. R.; Gaddamidi, V.; Cragg, G. M.; Herald, D. L.; Sagawa,
Y. J. Chem. Soc., Chem. Commun. 1984, 1693-1694. (b) Pettit, G.
R.; Gaddamidi, V.; Herald, D. L.; Singh, S. B.; Cragg, G. M.;
Schmidt, J. M. J. Nat. Prod. 1986, 49, 995-1002. (c) Pettit, G. R.;
Melody, N.; Herald, D. L. J. Nat. Prod. 2004, 67, 322-327. (d) Pettit,
G. R.; Ducki, S.; Orr, B. Antineoplastic Agents 453. Synthesis of
Pancratistatin Prodrugs. Anti-Cancer Drug Des. 2000, 15, 389-396.
(e) Pettit, G. R.; Freeman, S.; Simpson, M. J.; Thompson, M. A.;
Boyd, M. R.; Williams, M. D.; Pettit, G. R., III; Doubek, D. L.
Anticancer Drug Des. 1995, 10, 243-250.
(3) Bibby, M. C.; Holwell, S. E.; Pettit, G. R. Anti-Vascular & Anti-
Tumour Effects of the Novel Agent Pancratistatin Phosphate.
Abstract. Biological Basis for Antiangiogenic Therapy Conference,
Milan, Italy, November 8-10, 1999.
(4) Gabrielsen, B.; Monath, T. P.; Huggins, J. W.; Kefauver, D. F.; Pettit,
G. R.; Groszek, G.; Hollingshead, M.; Kirsi, J. J.; Shannon, W. M.;
Schubert, E. M.; Dare, J.; Ugarkar, B.; Ussery, M. A.; Phelan, M. J.
J. Nat. Prod. 1992, 55, 1569-1581.
(5) Ouarzane-Amara, M.; Franetich, J-F.; Mazier, D.; Pettit, G. R.; Meijer,
L.; Doerig, C.; Desportes-Livage, I. Antimicrob. Agents Chemother.
2001, 45, 3409-3415.
(6) Khan, P.; Abbas, S.; Pettit, G. R.; Caffrey, R.; Megram, V.; McGown,
A. J. Chromatogr. B 1999, 726, 249-254.
(7) For leading references, refer to: Pettit, G. R.; Melody, N.; Herald,
D. H. J. Org. Chem. 2001, 66, 2583-2587.
(8) (a) Hudlicky, T.; Rinner, U.; Gonzalez, D.; Akgun, H.; Schilling,
S.; Siengalewicz, P.; Martinot, T. A.; Pettit, G. R. J. Org. Chem.
2002, 67, 8726-8743. (b) McNulty, J.; Mao, J.; Gibe, R.; Mo, R.;
Wolf, S.; Pettit, G. R.; Herald, D. L.; Boyd, M. R. Bioorg. Med.
Chem. Lett. 2001, 11, 169-172. (c) Pettit, G. R.; Melody, N.; Herald,
D. L.; Schmidt, J. M.; Pettit, R. K.; Chapuis, J.-C. Heterocycles 2002,
56, 139-155.
(9) (a) Barton, D. H. R; McCombie, S. W. J. Chem. Soc., Perkin Trans.
1 1975, 1574-1585. (b) Barton, D. H. R.; Subramanian, R. J. Chem.
Soc., Chem. Comm. 1976, 867-868. (c) Barton, D. H. R.; Hartwig,
W.; Hay Motherwell, R. S.; Motherwell, W. B.; Stange, A.
Tetrahedron Lett. 1982, 23, 2019-2022.
(10) Pullukat, T. J.; Urry, G. Tetrahredron Lett. 1967, 21, 1953-1954.
(11) Kutney, J. P.; Honda, T.; Kazmaier, N. J. L.; Worth, B. R. HelV.
Chim. Acta 1980, 61, 366-374.
(12) Dolan, S. C.; Macmillian J. J. Chem. Soc., Chem. Commun. 1985,
1588-1589.
(13) (a) Rinner, U.; Siengalewicz, P.; Hudlicky, T. Org. Lett. 2002, 4,
115-117. (b) Pettit, G. R.; Du, J.; Pettit, R. K.; Richert, L. A.; Hogan,
F.; Mukku, V. J. R. V.; Hoard, M. S. J. Nat. Prod. 2006, 69, 804-
806.
(14) (a) Okamoto, T.; Torii, Y.; Isogai, Y. Chem. Pharm. Bull. 1968, 16,
1860-1864. (b) Mondon, A.; Krohn, K. Chem. Ber. 1975, 108, 445-
463.
(15) Blessing, R. Acta Crystallogr. 1995, A51, 33-8.
(16) SHELXTL-Version 5.1, an integrated suite of programs for the
determination of crystal structures from diffraction data; Bruker AXS,
Inc.: Madison, WI, 1997. This package includes, among others,
XPREP (an automatic space group determination program), SHELXS
(a structure solution program via Patterson or direct methods), and
SHELXL (structure refinement software).
(17) Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paul, K.;
Vestica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A. J.
Natl. Cancer Inst. 1991, 83, 757-755.
C18 reversed-phase HPLC (ZorbaxSB-C18, 3:2 H2O-CH3OH to CH3-
OH): mp 169 °C; EIMS m/z (%) 493 [M+, 15.5], 433 (5), 313 (18.9),
271 (100), 206 (17.2); HRFAB calcd for C22H24O12N [M + H]+,
494.1298; found [M + H]+, 494.1296; 1H NMR (500 MHz, CDCl3) δ
11.97 (s, 1H), 6.27 (s, 1H), 6.03 (m, 2H), 5.52-5.47 (m, H-4, H-2),
5.30 (dd, J ) 11,3 Hz, H-3), 5.25 (t, J ) 11 Hz, H-1), 4.01 (m, H-4a),
3.15 (m, H-10b), 2.19 (s, 3H), 2.04 (S, 3H), 2.03 (s, 3H), 1.95 (s, 3H);
13C NMR (125 Hz, CDCl3) δ 170.2, 170.2, 170.1, 169.4, 169.0, 152.4,
146.6, 134.1, 132.4, 106.4, 102.5, 101.0, 72.0, 69.4, 69.2, 68.3, 52.9,
40.0, 20.7, 20.6, 20.6, 20.5.
Cancer Cell Line Procedures. Inhibition of human cancer cell
growth was assessed using the National Cancer Institute’s standard
sulforhodamine B assay as previously described.17 Briefly, cells in a
5% fetal bovine serum/RPMI1640 medium solution were inoculated
in 96-well plates and incubated for 24 h. Serial dilutions of the
compounds were then added. After 48 h, the plates were fixed with
trichloroacetic acid, stained with sulforhodamine B, and read with an
automated microplate reader. A growth inhibition of 50% (GI50 or the
drug concentration causing a 50% reduction in the net protein increase)
was calculated from optical density data with Immunosoft software.
Mouse leukemia P388 cells18 were incubated 24 h in a 10% horse
serum/Fisher medium solution followed by a 48 h incubation with serial
dilutions of the compounds. Cell growth inhibition (ED50) was then
calculated using a Z1 Beckman/Coulter particle counter.
(18) Suffness, M.; Douros, J. In Methods in Cancer Research, Vol. XVI,
Cancer Drug DeVelopment Part A; Devita, V. T., Jr., Bush, H., Eds.;
Academic Press: New York, 1979; pp 73-126.