Scheme 1. Retrosynthetic Analysis for Some Stemona Alkaloids
In 1982, Xu and co-workers assigned to stemonidine, an
flexible approach, with some intermediates being common
precursors of various alkaloids (Scheme 1).13A main advan-
tage of this methodology is the high antifacial selectivity
accomplished in the 1,3-dipolar cycloadditions of nitrones
such as 6 to electron-deficient olefins of type 5, delivering
isoxazolidine adducts 4 with relative trans configuration of
the stereogenic centers at C3 and C9a, as required for the
target alkaloids.13b,14
Previously, we have reported the one-step preparation of
(S)-5-hydroxymethyl-1-pyrroline N-oxide, 7, by treatment of
L-prolinol, 8, with dimethyldioxirane in acetone at low
temperature and its isolation in 32% yield.14a Although this
straightforward methodology competed favorably with other
preparations of related nitrones in terms of brevity and yield,
difficulties associated with the purification of 7 and scaling-
up of the procedure led us to temporarily abandon its use
and explore different alternatives. However, recent reports
disclosing a new protocol for in situ dioxirane reactions15
led us to reinvestigate the possibility of preparing the required
nitrone by direct oxidation of a prolinol derivative. Hence,
the TBDPS derivative of L-prolinol 9 was prepared16 and
treated with Oxone under different reaction conditions
(Scheme 2). As the best result, it was found that 2.1 equiv
of the oxidant in THF-CH3CN (1:4) in the presence of
EDTA and NaHCO3 at 0 °C furnished a chromatographically
separable mixture of nitrones 6 and 10 in 1.3:1 ratio and
90% total yield.
alkaloid isolated from the roots of Stemona tuberosa, the
1
structure depicted as 1, on the basis of its H NMR data.2
Later on, the same group revised the former stereochemical
assignment and proposed the new structure that is depicted
as 2.3 More recently, Williams and co-workers completed
the first synthesis of (-)-stemospironine and found that its
spectral and physical data matched those reported for the
natural material, whose structure had been unequivocally
established by X-ray analysis.4 They also found that the 13
C
NMR spectra of synthetic stemospironine and natural ste-
monidine were virtually identical; the authors did not exclude
the possibility of the two compounds being spirocyclic
diastereomers. Herein, we describe the total synthesis and
NMR data of the putative structure of stemonidine 2, which
are definitive proof of the incorrect original assignments of
the natural product.
The challenging molecular architecture of the Stemona
alkaloids has attracted considerable interest among synthetic
organic chemists, and several total syntheses have been
published, although they are limited to a quite small number
of targets.4-12 We designed a strategy in which the azabi-
cyclic core was generated at an early stage of the sequence
and the R-methyl-γ-butyrolactone and other specific frag-
ments were then incorporated, with the aim of developing a
(2) Xu, R.; Lu, Y.; Chu, J.; Iwashita, T.; Naoki, H.; Naya, Y.; Nakanishi,
K. Tetrahedron 1982, 38, 2667.
(3) He, X.; Lin, W.; Xu, R. Huaxue Xuebao 1990, 48, 694.
(4) (-)-Stemospironine: Williams, D. R.; Fromhold, M. G.; Early, J.
D. Org. Lett. 2001, 3, 2721.
According to the plan, the first step in the synthesis of
stemonidine was the 1,3-dipolar cycloaddition between
(5) (+)-Croomine: (a) Williams, D. R.; Brown, D. L.; Benbow, J. W.
J. Am. Chem. Soc. 1989, 111, 1923. (b) Martin, S. F.; Barr, K. J. J. Am.
Chem. Soc. 1996, 118, 3299.
(6) (()-Stenine: (a) Chen, C.-Y.; Hart, D. J. J. Org. Chem. 1990, 55,
6236. (b) Ginn, J. D.; Padwa, A. Org. Lett. 2002, 4, 1515. (c) Golden, J.
E.; Aube´, J. Angew. Chem., Int. Ed. 2002, 41, 4316. (-)-Stenine: (d) Wipf,
P.; Kim, Y.; Goldstein, D. M. J. Am. Chem. Soc. 1995, 117, 11106. (e)
Morimoto, Y.; Iwahashi, M.; Nishida, K.; Hayashi, Y.; Shirahama, H.
Angew. Chem., Int. Ed. Engl. 1996, 35, 904.
(9) (()-Stemonamide and (()-isostemonamide: Kende, A. S.; Hernando,
J. I. M.; Milbank, J. B. J. Org. Lett. 2001, 3, 2505.
(10) (-)-Tuberostemonine: Wipf, P.; Rector, S. R.; Takahashi, H. J.
Am. Chem. Soc. 2002, 124, 14848.
(11) (-)-Stemonine: Williams, D. R.; Shamim, K.; Reddy, J. P.; Amato,
G. S.; Shaw, S. M. Org. Lett. 2003, 5, 3361.
(12) (()-Didehydrostemofoline and (()-isodidehydrostemofoline: Bru¨gge-
mann, M.; McDonald, A. I.; Overman, L. E.; Rosen, M. D.; Schwink, L.;
Scott, J. P. J. Am. Chem. Soc. 2003, 125, 15284.
(7) (()-Stemoamide: (a) Kohno, Y.; Narasaka, K. Bull. Chem. Soc. Jpn.
1996, 69, 2063. (b) Jacobi, P. A.; Lee, K. J. Am. Chem. Soc. 1997, 119,
3409. (-)-Stemoamide: (c) Williams, D. R.; Reddy, J. P.; Amato, G. S.
Tetrahedron Lett. 1994, 35, 6417. (d) Kinoshita, A.; Mori, M. J. Org. Chem.
1996, 61, 8356. (e) Jacobi, P. A.; Lee, K. J. Am. Chem. Soc. 2000, 122,
4295. (f) Gurjar, M. K.; Reddy, D. S. Tetrahedron Lett. 2002, 43, 295. (g)
Sibi, M. P.; Subramanian, T. Synlett 2004, 1211. (h) Olivo, H. F.; Tovar-
Miranda, R.; Barraga´n, E. J. Org. Chem. 2006, 71, 3287. (i) Bogliotti, N.;
Dalko, P. I.; Cossy, J. J. Org. Chem. 2006, 71, 9528.
(13) (a) Cid, P.; Closa, M.; de March, P.; Figueredo, M.; Font, J.;
Sanfeliu, E.; Soria, A. Eur. J. Org. Chem. 2004, 4215. (b) Alibe´s, R.; Blanco,
P.; Casas, E.; Closa, M.; de March, P.; Figueredo, M.; Font, J.; Sanfeliu,
E.; AÄ varez-Larena, A. J. Org. Chem. 2005, 70, 3157.
(14) (a) Closa, M.; de March, P.; Figueredo, M.; Font, J. Tetrahedron:
Asymmetry 1997, 8, 1031. (b) Busque´, F.; de March, P.; Figueredo, M.;
Font, J.; Gallagher, T.; Mila´n, S. Tetrahedron: Asymmetry 2002, 13, 437.
(15) (a) Evarts, J. B.; Fuchs, P. L. Tetrahedron Lett. 2001, 42, 3673. (b)
Li, W.; Fuchs, P. L. Org. Lett. 2003, 5, 2853.
(8) (()-Isostemofoline: Kende, A. S.; Smalley, T. L., Jr.; Huang, H. J.
Am. Chem. Soc. 1999, 121, 7431.
(16) Gerasyuto, A. I.; Hsung, R. P.; Sydorenko, N.; Slafer, B. J. Org.
Chem. 2005, 70, 4248.
1770
Org. Lett., Vol. 9, No. 9, 2007