C O M M U N I C A T I O N S
chemically or using flash vacuum pyrolysis, is a short-lived transient
at room temperature16 and is relatively stable only in cryogenic
matrices.17
Scheme 3
Figure 1. Light-induced cleavage of æX174 DNA in the presence of 1.
Lanes 1-5: DNA irradiated for 0, 15, 45, 180, and 480 s. Lanes 6-9:
DNA + 1 (1787 µM), irradiated for 0, 15, 45, and 180 s. Lanes 10-14:
DNA + 1 (488 µM), irradiated for 0, 15, 45, 180, and 480 s. Lanes 15-
19: DNA + 1 (82 µM), irradiated for 0, 15, 45, 180, and 480 s. Lane 20:
DNA incubated with PSt-I restriction enzyme for 1 h at 37 °C. Lane 21:
DNA alone.
The reactivity difference between regioisomeric enediynes 3a
and 3b is also quite remarkable. We believe that this phenomenon
is caused by the electronic influence of the substituent at the vinylic
terminus of the π-conjugated system. The electron-rich hydroxyl
group in 3Eb donates electron density to the out-of-plane π-orbitals,
thus increasing the aromatic stabilization of the Bergman cyclization
transition state.18 The electron-withdrawing carbonyl group in 3Ea,
on the other hand, retards the cycloaromatization reaction.
In addition, the photochemistry of R-diazo-â-diketone 1 provides
us with the first direct experimental comparison of migratory
aptitudes of sp3- and sp-hybridized carbon atoms in the Wolff
rearrangement. â-Ketoesters 4a and 4b, which are formed by the
migration of alkyl and acetylenic substituents, correspondingly, are
obtained in the ratio of 7:4. This observation indicates the
preferential migration of the alkyl versus alkynyl substituents in
the Wolff rearrangement. Thermolysis of 1 at 100 °C in ethanol in
the presence of 1,4-cyclohexadiene produces 4a and 4b (R ) Et)
in a similar ratio.
An initial evaluation of the DNA cleavage ability of photoge-
nerated 10-membered ring enediynes 3a and 3b was carried out
using supercoiled plasmid DNA cleavage assays. Three forms of
this DNA [native (RF I), circular relaxed (RF II, produced by single-
strand cleavage), and linear (RF III, formed by scission of both
strand in close proximity)] are readily separated by the agarose gel
electrophoresis.
Solutions containing various concentrations of 1 and æX174
supercoiled circular DNA (30 ng/µL) were irradiated at 351.1 nm
using an argon ion laser at ca. -5 °C. Diazodiketone 1 induces
substantial single-strand cleavage (RF II) of æX174 DNA upon
irradiation, while the linearized form (RF III) was observed only
at higher concentrations of the cleaving agent (>500 µM) and
prolonged irradiation (Figure 1). The relatively high concentrations
of 1, which are required to achieve double-strand DNA photoscis-
sion, indicate that 1 has low affinity to a dDNA molecule. In order
to improve the photonuclease activity of enediyne 1, it is being
conjugated with a dDNA minor-groove binding moiety. It is also
interesting to note that irradiation of 1 in the presence of æX174
produces a new modification of DNA with lowest electrophoretic
mobility (Figure 1). The nature of this band, which was preliminar-
ily attributed to the covalently cross-linked dimer, is under
investigation.
termini of the extended π-system have pronounced effect on the
reactivity of the dienediyne system.
Acknowledgment. We thank the NIH (CA91856-01A1) and
the NSF (CHE-0449478) for the support of this project, and
Professor R.M. Wilson and Dr. E.T. Mack for the assistance in
conducting DNA photocleavage experiments.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
References
(1) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25.
(2) For recent reviews, see: (a) Enediyne Antibiotics as Antitumor Agents;
Borders, D. B., Doyle, T. W., Eds.; Marcel Dekker: New York, 1995.
(b) Jones, G. B.; Fouad, F. S. Curr. Pharm. Des. 2002, 8, 2415. (c)
Nicolaou, K. C.; Dai, W.-M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387.
(d) Danishefsky, S. J.; Shair, M. D. J. Org. Chem. 1996, 61, 16.
(3) (a) Kagan, J.; Wang, X.; Chen, X.; Lau, K. Y.; Batac, I. V.; Tuveson, R.
W.; Hudson, J. B. J. Photochem. Photobiol. B 1993, 21, 135. (b) Turro,
N. J.; Evenzahav, A.; Nicolaou, K. C. Tetrahedron Lett. 1994, 35, 8089.
(c) Kaneko, T.; Takahashi, M.; Hirama, M. Angew. Chem., Int. Ed. 1999,
38, 1267. (d) Plourde, G., II; El-Shafey, A.; Fouad, F.; Purohit, A.; Jones,
G. Bioorg. Med. Chem. Lett. 2002, 12, 2985.
(4) (a) Benites, P. J.; Holmberg, R. C.; Rawat, D. S.; Kraft, B. J.; Klein, L.
J.; Peters, D. G.; Thorp, H. H.; Zaleski, J. M. J. Am. Chem. Soc. 2003,
125, 6434-6446. (b) Kraft, B. J.; Coalter, N. L.; Nath, M.; Clark, A. E.;
Siedle, A. R.; Huffman, J. C.; Zaleski, J. M. Inorg. Chem. 2003, 42, 1663.
(5) (a) Choy, N.; Blanco, B.; Wen, J.; Krishan, A.; Russell, K. C. Org. Lett.
2000, 2, 3761. (b) Funk, R. L.; Young, E. R. R.; Williams, R. M.;
Flanagan, M. F.; Cecil, T. L. J. Am. Chem. Soc. 1996, 118, 3291.
(6) Shiraki, T.; Sugiura, Y. Biochemistry 1990, 29, 9795.
(7) (a) Poloukhtine, A.; Popik, V. V. J. Org. Chem. 2005, 70, 1297. (b)
Poloukhtine, A.; Popik, V. V. Chem. Commun. 2005, 617.
(8) (a) Magnus, P.; Lewis, R. T.; Huffmann, J. C. J. Am. Chem. Soc. 1988,
110, 6921. (b) Schreiner, P. R. J. Am. Chem. Soc. 1998, 120, 4184. (c)
Cramer, C. J. J. Am. Chem. Soc. 1998, 120, 6261. (d) Koseki, S.; Fujimura,
Y.; Hirama, M. J. Phys. Chem. A 1999, 103, 7672. (e) Nicolaou, K. C.;
Ogawa, Y.; Zuccarello, G.; Schweiger, E. J.; Kumazawa, T. J. Am. Chem.
Soc. 1988, 110, 4866. (f) Jones, G. B.; Wright, J. M.; Hynd, G.; Wyatt,
J.; Warner, P. M.; Huber, R. S.; Li, A.; Kilgore, M. W.; Sticca, R. P.;
Pollenz, R. S. J. Org. Chem. 2002, 67, 5727.
(9) Supporting Information.
(10) Takai, K.; Kuroda, T.; Nakatsukasa, S.; Oshima, K.; Nozaki, H.
Tetrahedron Lett. 1985, 26, 5585.
(11) For a recent review, see: Kirmse, W. Eur. J. Org. Chem. 2002, 2193.
(12) (a) Chang, J. A.; Kresge, A. J.; Nikolaev, V. A.; Popik, V. V. J. Am.
Chem. Soc. 2003, 125, 6478. (b) Chiang, Y.; Kresge, A. J.; Nikolaev, V.
A.; Popik, V. V. J. Am. Chem. Soc. 1997, 19, 11183.
(13) Yoshida, K.; Minami, Y.; Otani, T.; Tada, Y.; Hirama, M. Tetrahedron
Lett. 1994, 35, 5253.
(14) Semmelhack, M. F.; Neu, T.; Foubelo, F. J. Org. Chem. 1994, 59, 5038.
(15) Henry, N. C.; Sondheimer, F. Tetrahedron Lett. 1980, 21, 217.
(16) Schottelius, M. J.; Chen, P. J. Am. Chem. Soc. 1996, 118, 4896.
(17) Wenk, H. H.; Sander, W. Eur. J. Org. Chem. 1999, 57.
(18) (a) Alabugin, I. V.; Manoharan, M. J. Phys. Chem. A 2003, 107, 3363.
(b) Schreiner, P. R.; Navarro-Vasquez, A.; Prall, M. Acc. Chem. Res. 2005,
38, 29. (c) Rawat, D. S.; Zaleski, J. M. Synlett 2004, 393.
In conclusion, the photoswitchable enediyne compound, which
is stable in the dark but converted into a very reactive form by
light-induced ring contraction, has been designed and synthesized.
Benzannulated 10-membered ring enediynes containing an ad-
ditional endocyclic double bond undergo facile cycloaromatization
even at 0 °C. The electronic properties of substituents at the alkene
JA064470Q
9
J. AM. CHEM. SOC. VOL. 129, NO. 13, 2007 3793