ORGANIC
LETTERS
2007
Vol. 9, No. 8
1509-1512
Enhanced Electron Transfer by Dendritic
Architecture: Energy Transfer and
Electron Transfer in Snowflake-Shaped
Zn Porphyrin Dendrimers
Masatoshi Kozaki,* Kogen Akita, and Keiji Okada*
Graduate School of Science, Osaka City UniVersity, 3-3-138 Sugimoto, Sumiyoshi-ku,
Osaka 558-8585, Japan
kozaki@sci.osaka-cu.ac.jp; okadak@sci.osaka-cu.ac.jp
Received January 31, 2007
ABSTRACT
Photoinduced electron transfer was observed for the snowflake-shaped dendrimer with the Zn porphyrin core and anthraquinonyl terminals.
Comparison of the electron-transfer efficiency of the dendrimer with the linear analogues indicates the advantage of the dendritic structure
for the electron-transfer process.
Dendrimers have been extensively studied as promising
candidates for a highly effective light-harvesting antenna in
artificial photosynthesis.1 Efficient exothermic energy transfer
from branches into a core has been observed in many
systems. However, fewer studies have been reported on the
electron-transfer processes using harvested photoenergy.2,3
In most cases, these studies involve dendrimers possessing
an electron acceptor at the core and large numbers of electron
donors at the peripheral ends of the branching chain or vice
versa,4 so that there are many different distances between
electron donors and acceptors that impede the analysis. For
this reason, the principle mechanism of how dendritic
architecture influences the efficiency of electron transfer has
not yet been established.
We have recently prepared a snowflake-shaped dendrimer
that has a rigid conjugated oligomer network inside the
flexible dendritic structure.5 Here, we apply this structure to
artificial photosynthesis by introducing an electron donor at
the core and electron acceptors at the terminals of conjugated
chains (Figure 1). This strategy is different from all the
(1) (a) Newcome, G. R.; Moorefield, C. N.; Vo¨gtle, F. Dendrimers and
Dendrons: Concepts, Syntheses, Applications; VCH: Weinheim, Germany,
2001. (b) Fre´chet, J. M. J.; Tomalia, D. A. Dendrimers and other Dendritic
Polymers; John Wiley & Sons: New York, 2002. (c) Balzani, V.; Venturi,
M.; Credi, A. Molecular DeVices and Machines -A Journey into the Nano
World; Wiley-VCH: Weinheim, Germany, 2003; p 96.
(2) Some selected papers of dendrimers with light-harvesting proper-
ties: (a) Devadoss, C.; Bharathi, P.; Moore, J. S. J. Am. Chem. Soc. 1996,
118, 9635. (b) Jiang, D.-L.; Aida, T. Nature 1997, 388, 454. (c) Jiang,
D.-L.; Aida, T. J. Am. Chem. Soc. 1998, 120, 10895. (d) Kimura, M.; Shiba,
T.; Yamazaki, M.; Hanabusa, K.; Shirai, H.; Kobayashi, N. J. Am. Chem.
Soc. 2001, 123, 5636. (e) Choi, M.-S.; Aida, T.; Yamazaki, T.; Yamazaki,
I. Chem.-Eur. J. 2002, 8, 2668.
(3) Some selected papers of photoinduced electron transfer in dendrim-
ers: (a) Sadamoto, R.; Tomioka, N.; Aida, T. J. Am. Chem. Soc. 1996,
118, 3978. (b) Rajesh, C. S.; Capitosti, G. J.; Cramer, S. J.; Moodarelli, D.
A. J. Phys. Chem. B 2001, 105, 10175. (c) Capitosti, G. J.; Guerreo, C. D.;
Binkley, D. E., Jr.; Rajesh, C. S.; Moodarelli, D. A. J. Org. Chem. 2003,
68, 247.
(4) For dendrimers with both light-harvesting and charge-separating
systems, see: (a) Guldi, D. M.; Swartz, A.; Luo, C.; Go´mez, R.; Segura, J.
L.; Mart´ın, N. J. Am. Chem. Soc. 2002, 124, 10875. (b) Qu, J.; Pschirer, N.
G.; Liu, D.; Stefan, A.; Schryver, F. C. D.; Mu¨llen, K. Chem.-Eur. J. 2004,
10, 528. (c) Thomas, K. R. J.; Thompson, A. L.; Sivakumar, A. V.; Bardeen,
C. J.; Thayumanavan, S. J. Am. Chem. Soc. 2005, 127, 373. (d) Schryver,
F. C. D.; Vosch, T.; Cotlet, M.; Van der Auwerare, M.; Mu¨llen, K.; Hofkens,
J. Acc. Chem. Res. 2005, 38, 514. (e) Nantalaksakul, A.; Dasari, R. R.;
Ahn, T.-S.; Bardeen, C. J.; Thayumanavan, S. Org. Lett. 2006, 8, 2981.
(5) Kozaki, M.; Okada, K. Org. Lett. 2004, 6, 485.
10.1021/ol070245h CCC: $37.00
© 2007 American Chemical Society
Published on Web 03/20/2007