A. P. Crew et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2092–2097
2097
and Ms. Viorica Lazarescu and Dr. Minghui Wang for analytical
support.
Additionally we would like to recognize Dr. Arno G. Steinig,
Dr. An-Hu Li and Mr. Anthony Nigro from the OSI IGF-1R team
by whom some of the chemical seeds and intermediates used in
this work were generated.11,12
350
300
250
200
150
100
50
Vehicle Control
100 mg/kg qd 1-14
References and notes
1. (a) Faivre, S.; Kroemer, G.; Raymond, E. Nat. Rev. Drug Disc. 2006, 5, 671; (b)
Guertin, D. A.; Sabatini, D. M. Cancer Cell 2007, 12, 9; (c) Wullschleger, S.;
Loewith, R.; Hall, M. N. Cell 2006, 124, 471; (d) Chiang, G. G.; Abraham, R. T.
Trends Mol. Med. 2007, 13, 433; (e) Meric-Bernstam, F.; Gonzalez-Angulo, A. M.
J. Clin. Oncol. 2009, 27, 2278.
0
1
6
11
Days
16
21
2. (a) Laplante, M.; Sabatini, D. M. J. Cell Sci. 2009, 122, 3589; (b) Proud, C. G.
Biochem. Soc. Trans. 2009, 37, 227.
3. (a) Loewith, R.; Jacinto, E.; Wullschleger, S.; Lorberg, A.; Crespo, J. L.; Bonenfant,
D.; Oppliger, W.; Jenoe, P.; Hall, M. N. Mol. Cell 2002, 10, 457; (b) Hay, N.;
Sonenberg, N. Genes Dev. 2004, 18, 1926.
Figure 5. Tumor growth inhibition of compound 4c in MDA-MB-231 xenograft.
4. (a) Sarbassov, D. D.; Guertin, D. A.; Ali, S. M.; Sabatini, D. M. Science 2005, 307,
1098; (b) Engelman, J. A. Nat. Rev. Cancer 2009, 9, 550.
5. O’Reilly, K. E.; Rojo, F.; She, Q.-B.; Solit, D.; Mills, G. B.; Smith, D.; Lane, H.;
Hofmann, F.; Hicklin, D. J.; Ludwig, D. L.; Baselga, J.; Rosen, N. Cancer Res. 2006,
66, 1500.
respectively, commensurate with the mechanistic data and sug-
gesting that these phenotypic effects were target mediated. Rapa-
mycin was unable to inhibit any proliferation in this cell line
6. (a) Bhagwat, S. V.; Crew, A. P.; Gokhale, P. C.; Yao, Y.; Kahler, J.; Arnold, L. D.;
Epstein, D. M.; Wild, R.; Pachter, J. A. Abstr. Am. Assoc. Cancer Res. 2009, 100,
3711; (b) Bhagwat, S. V.; Crew, A. P.; Gokhale, P. C.; Yao, Y.; Kahler, J.; Epstein,
D. M.; Wild, R.; Pachter, J. A. Abstr. Am. Assoc. Cancer Res. 2010, 101, 4487; (c)
Choo, A. Y.; Yoon, S.-O.; Kim, S. G.; Roux, P. P.; Blenis, J. PNAS 2008, 105, 17414.
7. (a) Raynaud, F. I.; Eccles, S.; Clarke, P. A.; Hayes, A.; Nutley, B.; Alix, S.; Henley,
A.; Di-Stefano, F.; Ahmad, Z.; Guillard, S.; Bjerke, L. M.; Kelland, L.; Valenti, M.;
Patterson, L.; Gowan, S.; Brandon, A. H.; Hayakawa, M.; Kaizawa, H.; Koizumi,
T.; Ohishi, T.; Patel, S.; Saghir, N.; Parker, P.; Waterfield, M.; Workman, P. Cancer
Res. 2007, 67, 5840; (b) Maira, S.-M.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell,
C.; Fritsch, C.; Brachmann, S.; Chène, P.; Pover, A. D.; Schoemaker, K.; Fabbro,
D.; Gabriel, D.; Simonen, M.; Murphy, L.; Finan, P.; Sellers, W.; García-
Echeverría, C. Mol. Cancer Ther. 2008, 7, 1851; (c) Chresta, C. M.; Davies, B. R.;
Hickson, I.; Harding, T.; Cosulich, S.; Critchlow, S. E.; Vincent, J. P.; Ellston, R.;
Jones, D.; Sini, P.; James, D.; Howard, Z.; Dudley, P.; Hughes, G.; Smith, L.;
Maguire, S.; Hummersone, M.; Malagu, K.; Menear, K.; Jenkins, R.; Jacobsen, M.;
Smith, G. C. M.; Guichard, S.; Pass, M. Cancer Res. 2010, 70, 288; (d) Thoreen, C.
C.; Kang, S. A.; Chang, J. W.; Liu, Q.; Zhang, J.; Gao, Y.; Reichling, L. J.; Sim, T.;
Sabatini, D. M.; Gray, N. S. J. Biol. Chem. 2009, 284, 8023; (e) Apsel, B.; Blair, J. A.;
Gonzalez, B.; Nazif, T. M.; Feldman, M. E.; Aizenstein, B.; Hoffman, R.; Williams,
R. L.; Shokat, K. M.; Knight, Z. A. Nat. Chem. Biol. 2008, 4, 691; (f) Yu, K.; Shi, C.;
Toral-Barza, L.; Lucas, J.; Shor, B.; Kim, J. E.; Zhang, W.-G.; Mahoney, R.; Gaydos,
C.; Tardio, L.; Kim, S. K.; Conant, R.; Curran, K.; Kaplan, J.; Verheijen, J.; Ayral-
Kaloustian, S.; Mansour, T. S.; Abraham, R. T.; Zask, A.; Gibbons, J. J. Cancer Res.
2010, 70, 621; (g) Jessen, K.; Wang, S.; Kessler, L.; Guo, X.; Kucharski, J.;
Staunton, J.; Lan, L.; Elia, M.; Stewart, J.; Bown, J.; Li, L. Mol. Cancer Ther. 2009, 8,
B148.
8. Bhagwat, S. V.; Crew, A. P. Curr. Opin. Invest. Drugs 2010, 11, 638.
9. Bhagwat, S. V.; Kahler, J.; Yao, Y.; Maresca, P.; Brooks, M.; Crew, A.; Boisclair,
M.; Pachter, J. A. Assay Drug Dev. Technol. 2009, 7, 471.
10. Mulvihill, M. J.; Cooke, A.; Rosenfeld-Franklin, M.; Buck, E.; Foreman, K.;
Landfair, D.; O’Connor, M.; Pirritt, C.; Sun, Y.; Yao, Y.; Arnold, L. D.; Gibson, N.
W.; Ji, Q. S. Future Med. Chem. 2009, 1, 1153.
11. Mulvihill, M. J.; Ji, Q.-S.; Coate, H. R.; Cooke, A.; Dong, H.; Feng, L.; Foreman, K.;
Rosenfeld-Franklin, M.; Honda, A.; Mak, G.; Mulvihill, K. M.; Nigro, A. I.;
O’Connor, M.; Pirrit, C.; Steinig, A. G.; Siu, K.; Stolz, K. M.; Sun, Y.; Tavares, P. A.
R.; Yao, Y.; Gibson, N. W. Bioorg. Med. Chem. 2008, 16, 1359.
12. Mulvihill, M. J.; Ji, Q.-S.; Werner, D.; Beck, P.; Cesario, C.; Cooke, A.; Cox, M.;
Crew, A.; Dong, H.; Feng, L.; Foreman, K. W.; Mak, G.; Nigro, A.; O’Connor, M.;
Saroglou, L.; Stolz, K. M.; Sujka, I.; Volk, B.; Weng, Q.; Wilkes, R. Bioorg. Med.
Chem. Lett. 2007, 17, 1091.
(IC50 >50
In addition to moderate ERs, both agents exhibited good perme-
ability (PAMPA >250 nm/s) and solubility (>100 M at pH 7.4) and
so were progressed to mouse PK studies. As shown in Table 8, both
agents demonstrated high plasma exposures, as well as low clear-
ance and good bioavailability on oral dosing at 20 mg/kg.
Despite the modest cell potencies of these compounds, the
exposures obtained on oral dosing were sufficient to evaluate the
potential of these agents to exert pharmacodynamic effects in vivo.
To compensate for plasma protein binding effects (90.3% and 88.1%
for 3c and 4c, respectively) these agents were dosed at 100 mg/kg
to CD-1 nude mice bearing MDA-MB-231 xenografts. As shown in
Figure 4, both agents were able to effect significant inhibition of
4E-BP1 phosphorylation at 4 and 8 h.
In order to assess whether such mechanistic target inhibition
in vivo was sufficient to drive an associated functional effect, com-
pound 4c was dosed orally for 14 days at 100 mg/kg qd to CD-1
nude mice bearing subcutaneous MDA-MB-231 xenografts. The
agent was well tolerated (body weight loss 62%) and this dose
indeed resulted in 94% tumor growth inhibition (Fig. 5).14
In summary, our efforts towards the discovery of dual mTORC1/
2 inhibitors led to the identification of a series of 1,3-disubstituted
imidazo[1,5-a]pyrazin-8-amines. Optimization of the 1- and 3-
substituents resulted in compounds 3c and 4c that combined
sub-micromolar mTOR biochemical potency, mechanistic and
phenotypic effects in a rapamycin resistant cell line, and in vitro
metabolic stability. Both agents also exhibited emerging kinase
selectivity and excellent pharmacokinetics on oral dosing. In
particular, proof-of-concept compound 4c was identified that dem-
onstrated in vivo target inhibition in xenografts, with commensu-
rate and significant inhibition of tumor growth in this tumor line
and thereby establishing the viability of this series as orally effica-
cious dual mTORC1/2 inhibitors. Further optimization of com-
pound 4c in terms of potency, selectivity and general in vivo
properties, leading to the discovery of the clinical mTORC1/2 agent
OSI-027 will be described in future communications.
lM).
l
13. Falcon, B. L.; Barr, S.; Gokhale, P. C.; Chou, J.; Fogarty, J.; Depeille, P.; Miglarese,
M.; Epstein, D. M.; McDonald, D. M. Cancer Res. 2011, 71, 1.
14. Female nu/nu CD-1 mice were used in the xenograft studies. To assess anti-
tumor efficacy, MDA-MB-231 cells were implanted into the mammary fat pad.
Tumors were allowed to establish to 200 50mm3 before randomization into
treatment groups. Tumor volumes were determined twice weekly from caliper
measurements by V = (length ꢂ width2)/2. Tumor growth inhibition (TGI) was
determined by %TGI = {1 ꢀ [(Tt/T0)/(Ct/C0)]/1 ꢀ [C0/Ct]} ꢂ 100, where Tt = tumor
volume of treated animal ꢂ at time t, T0 = tumor volume of treated animal ꢂ at
time 0, Ct = median tumor volume of control group at time t, and C0 = median
tumor volume of control group at time 0. Mean %TGI was calculated for the
entire dosing period for each group. Significant anti-tumor activity is defined
as mean %TGI >50%.
Acknowledgements
We would like to thank Mr. Paul Maresca and Ms. Maureen
Brooks for developing and running the HTS, Mr. Peter Meyn,
Ms. Jo Dunseath and Mr. Roy Turton for in vitro ADMET support,