G. Appendino et al. / Bioorg. Med. Chem. Lett. 17 (2007) 132–135
135
C. M.; Julius, D.; Manthyh, P. W. J. Neurosci. 2005,
25, 3126; RTX was found ineffective for the treatment
of interstitial cystitis (Payne, C. K.; Mosbaugh, P. G.;
Forrest, J. B.; Evans, R. J.; Withmore, K. E.; Antoci,
J. P.; Perez-Marrero, R.; Jacoby, K.; Diokno, A. C.;
O’Reilly, K. J.; Greibling, T. L.; Vasavada, S. P.; Yu,
A. S.; Frumkin, L. R. J. Urol. 2005, 173, 1590).
9. Wahl, P.; Foged, C.; Tullin, S.; Thomsen, C. Mol.
Pharmacol. 2001, 59, 9.
10. Walpole, C. S. J.; Bevan, S.; Bloomfield, G.; Breckenridge,
R.; James, I. F.; Ritchie, T.; Szallasi, A.; Winter, J.;
Wrigglesworth, R. J. Med. Chem. 1996, 39, 2939.
11. Fattorusso, E.; Lanzotti, V.; Taglialatela-Scafati, O.;
Tron, G. C.; Appendino, G. Eur. J. Org. Chem. 2002, 71.
12. Appendino, G.; Daddario, N.; Minassi, A.; Schiano
Morello, A.; De Petrocellis, L.; Di Marzo, V. J. Med.
Chem. 2005, 48, 4663.
(q, C-19), 18.9 (q, C-17), 19.9 (q, C-18), 33.1 (d, C-11),
35.8 (t, C-12), 39.2 (d, C-8), 40.3 (t, C-5), 41.1 (d, C-20),
55.5 (d, C-10), 56.2 (q, OMe), 70.9 (d, C-20), 73.4 (s, C-4),
80.7 (d, C-14), 81.2 (s, C-9), 84.5 (s, C-13), 110.8 (t, C-16),
111.9 (d, C-300), 114.1 (d, C-600), 117.9 (s, C-10), 123.0 (s, C-
30), 124.3 (d, C-700), 126.6 (d, C-60), 127.8 (d, C-7), 128.7
(d, C-50/70), 130.9 (d, C-40/80), 134.5 (s, C-200), 135.1 (s, C-
6), 136.6 (s, C-2), 146.3 (s, C-15), 150.2 (s, C-400 and C-500),
158.5 (d, C-1), 166.0 (s, C-100), 208.3 (s, C-3); CI-MS m/z
615 (M+H+) (C36H38O9+H+).
16. Wender, P. A.; Jesudason, C. D.; Nakahira, H.; Tamura,
N.; Tebbe, A. L.; Ueno, Y. J. Am. Chem. Soc. 1997, 119,
12976.
17. Gordge, P. C.; Darey, P.; Tudor-Evans, A.; Jonathan
Ryves, W.; Evans, F. J.; Hassan, N. M. Phytotherapy Res.
1994, 8, 362.
18. Shu, A. J. Y.; Heys, J. R. In Synthesis and Applications of
Isotopically Labelled Compounds; Heys, J. R., Melillo, D.
G., Eds.; Wiley, 1998; p 463.
13. Appendino, G.; Minassi, A.; Daddario, N.; Bianchi, F.;
Tron, G. C. Org. Lett. 2002, 4, 3839.
14. Anderson, N. G.; Lust, D. A.; Colapret, K. A.; Simpson,
J. H.; Malley, M. E.; Gougoutas, J. Z. J. Org. Chem. 1996,
61, 7955.
19. McDonnel, M. E.; Zhang, S.-P.; Dubin, A. E.; Dax, S. L.
Bioorg. Med. Chem. Lett. 2002, 12, 1189.
20. Cells were grown as monolayers in minimum essential
medium supplemented with non-essential amino acids,
10% fetal calf serum, and 2 mM glutamine, and main-
tained under 95%/5% O2/CO2 at 37 °C. The effect of the
substances on [Ca2+]i was determined by using Fluo-3, a
selective intracellular fluorescent probe for Ca2+. One day
prior to experiments cells were transferred into six-well
dishes coated with Poly-L-lysine (Sigma) and grown in the
culture medium mentioned above. On the day of the exper-
iment the cells (50–60,000 per well) were loaded for 2 h at
25 °C with 4 lM Fluo-3 methylester (Molecular Probes) in
DMSO containing 0.04% Pluoronic. After the loading,
cells were washed with Tyrode, pH 7.4, tryp-
sinized, resuspended in Tyrode, and transferred to the
cuvette of the fluorescence detector (Perkin-Elmer LS50B)
under continuous stirring. Experiments were carried out
by measuring cell fluorescence at 25 °C (kEX = 488 nm,
15. Synthesis of 3a as exemplificative: (N.B.: Resiniferonoids
are obnoxious and toxic compounds, and their handling
should be carried out only by trained personnel, wearing
gloves and face protection, and working in a well-
ventilated hood). To a cooled (0 °C) stirred solution of
ROPA (2, 50 mg, 0.11 mmol) and vanillic acid (23 mg,
0.16 mmol, 1.5 mol equiv) in dry THF (2 mL), triphenyl-
phosphine (TPP, 41 mg, 0.16 mmol, 1.5 mol equiv) and
diisopropylazodicarboxylate (DIAD, 31 lL, 32 mg,
0.16 mmol, 1.5 mol equiv) were added. The reaction
mixture was stirred at room temperature and followed
by TLC on silica gel (hexane/EtOAc 7:3 as eluant, Rf
ROPA: 0.10; Rf 3a: 0.21). After 3 h, the reaction was
worked up by evaporation, and the residue was dissolved
in toluene (ca. 5 mL) and cooled to 4 °C overnight. After
filtration of the copious white precipitate, the filtrate was
purified by gravity column chromatography on silica gel
(15 mL, petroleum ether/EtOAc 7:2 as eluant) to afford
38 mg (57%) of 3a as a white powder. Mp 89 °C (ether);
1H NMR (CDCl3, 300 MHz): d 0.96 (d, J = 7.3 Hz, 18-
Me), 1.52 (s, 17-Me), 1.55 (m, H-12a), 1.81 (br d,
J = 1.1 Hz, H-19), 2.10 (m, H-12b), 2.20 (d, J = 19.0 Hz,
H-5a), 2.56 (d, J = 19.0 Hz, H-5b), 2.60 (m, H-11), 3.16 (br
s, H-8 and H-10), 3.21 (s, H-20), 3.93 (s, OMe), 4.25 (d,
J = 2.5 Hz, H-14), 4.71 (br s, H-16a,b), 4.73 (d,
J = 12.5 Hz, H-20a), 4.76 (d, J = 12.5 Hz, H-20b), 6.00
(br s, H-7), 6.92 (d, J = 8.1 Hz, H-600), ca. 7.25 (m, 10-Ar),
ca. 7.35 (m, 10-Ar), 7.48 (s, H-1), 7.54 (s, H-300), 7.61 (d,
J = 8.1 Hz, H-700); 13C-NMR (CDCl3, 75.5 MHz): d 10.4
kEM = 540 nm) before and after the addition of the test
compounds at various concentrations. Kinetic effects
(Szallasi, A.; Blumberg, P. M.; Annicelli, L. L. K.;
Krause, J. E.; Cortright, D. N. Mol. Pharmacol. 1999,
56, 581) were not observed in the calcium fluorescence
assays as all compounds behaved exactly like RTX in
terms of onset and duration of response.
21. For a discussion, see: Appendino, G.; Szallasi, A. Prog.
Med. Chem. 2006, 44, 145.
´
´ ´
22. Szolcsanyi, J.; Jancso-Gabor, A. Arzneim. Forsch. 1975,
25, 1877.
23. Chou, M. Z.; Mtui, T.; Gao, Y.-D.; Kohler, M.; Middle-
ton, R. E. Biochemistry 2004, 43, 2501.