Journal of the American Chemical Society
Page 4 of 5
R
[1] (a) Sun, S. G.; Chen, R. Y.; Yu, D. Q. J. Asian Nat. Prod. Res.
Ar
R
Ar
Pd0Ln
2001, 3, 253. (b) Du, J.; He, Z. D.; Wang, R.; Ye, W. C.; Xu, H. X.;
But, P. H. Phytochemistry, 2003, 62, 1235. (c) Sohn, H.-Y.; Son, K.
H.; Kwon, C.-S.; Kwon, G.-S.; Kang, S. S. Phytomedicine, 2004, 11,
666.
[2] Ni, G.; Zhang, Q.-J.; Zheng, Z.-F.; Chen, R.-Y.; Yu, D.-Q. J. Nat.
Prod. 2009, 72, 966.
[3] For Pd-catalyzed reactions with allylfluorosilanes, see: (a) Hat-
anaka, Y.; Ebina, Y.; Hiyama, T. J. Am. Chem. Soc. 1991, 113, 7076.
(b) Hatanaka, Y.; Goda, K.; Hiyama, T. Tetrahedron Lett. 1994, 35,
6511.
[4] For Pd-catalyzed reactions with allylstannanes, see: (a) Echavar-
ren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1987, 109, 5478. (b) Farina,
V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585. (c) Obora, Y.;
Tsuji, Y.; Kobayashi, M.; Kawamura, T. J. Org. Chem. 1995, 60,
4647. (d) Takaoka, S.; Nakade, K.; Fukuyana, Y. Tetrahedron Lett.
2002, 43, 6919. (e) Takemura, S.; Hirayama, A.; Tokunaga, J.; Ka-
wamura, F.; Inagaki, K.; Hashimoto, K.; Nakata, M. Tetrahedron
Lett. 1999, 40, 7501. (f) Mattson, A. E.; Scheidt, K. A. J. Am. Chem.
Soc. 2007, 129, 4508. (g) Takaoka, S.; Takaoka, N.; Minoshima, Y.;
Huang, J.-M.; Kubo, M.; Harada, K.; Hioki, H.; Fukuyama, Y. Tetra-
hedron, 2009, 65, 8354.
[5] For Pd-catalyzed reactions with allylboron derivatives, see: (a)
Yamamoto, Y.; Takada, S.; Miyaura, N. Chemistry Letters 2006, 35,
704. (b) Yamamoto, Y.; Takada, S.; Miyaura, N. Chemistry Letters
2006, 35, 1368. (c) Yamamoto, Y.; Takada, S.; Miyaura, N. Organo-
metallics 2009, 28, 152. (d) Sebelius, S; Olsson, V. J.; Szabó, K. J. J.
Am. Chem. Soc. 2005, 127, 10478. (e) Olsson, V. J.; Sebelius, S.;
Selander, N.; Szabó, K. J. J. Am. Chem. Soc. 2006, 128, 4588. (f)
Sebelius, S; Olsson, V. J.; Wallner, O. A.; Szabó, K. J. J. Am. Chem.
Soc. 2006, 128, 8150. (g) Gerbino, D. C.; Mandolesi, S. D.; Schmalz,
H.-G.; Podestá, J. C. Eur. J. Org. Chem. 2009, 3964. (h) For a recent
publication on secondary allylic boronic esters see: Glasspoole, B.
W.; Ghozati, K.; Moir, J. M.; Crudden, C. M. Chem. Commun. 48,
1230.
1
2
3
4
5
6
7
8
Ar-X
γ
-product
α
-product
Oxidative
Addition
Reductive
Elimination
Reductive
Elimination
R
PdIINHC
NHC
Ar
NHC
NHC
Ar PdII
26
R
Ar via 26
σ-π
PdII
Ar
PdII
X
π-allyl complex
25b
25a
R
interconversion
9
Transmetallation
SE2
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Transmetallation
OR
K
Bpin
R
SE2'
R
Bpin
+ KOHaq
In conclusion, sterically bulky Pd-PEPPSI-IPent 3 has
shown to be extremely reactive in the metal-catalyzed allyla-
tion of allylboronate derivatives. The high α-selectivity
demonstrated by 3 over all other Pd- catalysts in the Suzuki-
Miyaura cross-coupling of prenylboronic ester 2a with a varie-
ty of arylhalides illustrates that this process can now be used
with high reliability to produce such allylated aromatics. This
is especially important because isomeric allylated products
typically cannot be separated. We attribute the observed regi-
oselectivity primarily to both the significant steric bulk of the
NHC ligand and the substitution of the allylboronic ester. This
new protocol will serve to complement the usefulγ−selectivity
demonstrated by Miyaura5a-c and Szabo.5f While reactive al-
lylmetal species such as Mg,[14] Zn[15], and In[16] can be cou-
pled under mild conditions, those systems have failed to
demonstrate high selectivity in metal-catalyzed allylation.
Further, while allylstannanes[4] have demonstrated good linear
selectivity, the coupling requires harsh conditions and con-
fronts the chemist with tin waste and purification problems
that the boronate system does not.
[6] For the preparation of prenylpinacolboronic ester 2a and 2c, see:
Dutheuil, G.; Selander, N.; Szabo, K., J.; Aggarwal, V., K. Synthesis,
2008, 14, 2293.
[7] Organ, M. G.; Calimsiz, S.; Sayah, M.; Hoi, K. H.; Lough, A. J.
Angew. Chem. 2009, 121, 2419; Angew. Chem. Int. Ed. 2009, 48,
2383.
ASSOCIATED CONTENT
[8] (a) Calimsiz, S.; Sayah, M.; Mallik, D.; Organ, M. G. Angew.
Chem. 2010, 122, 2058; Angew. Chem. Int. Ed. 2010, 49, 2014; (b)
Valente, C.; Belowich, M. E.; Hadei, N.; Organ, M. G. Eur. J. Org.
Chem. 2010, 4343; (c) Calimsiz, S.; Organ. M. G. Chem. Commun.
2011, 47, 5181.
[9] Miyaura and co-workers reported unanticipated α–selectivity
when coupling 4- and 2-bromoanisoles (see reference 5b).
[10] For the purpose of comparison and the creation of standard
curves for GCMS analysis, these compounds were also prepared via a
Wittig reaction (see Supporting Information).
Supporting Information. Experimental procedures and charac-
terization of all new compounds. This material is available free of
AUTHOR INFORMATION
Corresponding Author
* Michael G. Organ, organ@yorku.ca
ACKNOWLEDGMENT
[11] Pigge, F. C. Synthesis, 2010, 11, 1745.
[12] For the preparation of 4,4,5,5-tetramethyl-2-(2-methylbut-3-en-
2-yl)-1,3,2-dioxaborolane 2b, see: Hoffmann, R. W.; Wolff, J. J.
Chem. Ber. 1991, 124, 563.
[13] Zhang, P.; Roundtree, I. A.; Morken, J. P. Org. Lett. 2012, 14,
1416.
[14] (a) Tsuji, T.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed.
2002, 41, 4137. (b) Ohmiya, H.; Tsuji, T.; Yorimitsu, H.; Oshima, K.
Chem. Eur. J. 2004, 10, 5640.
The authors are grateful to the National Science and Engineering
Council of Canada (NSERC), the Ontario Research and Devel-
opment Challenge Fund (ORDCF), the Ontario Graduate Scholar-
ship Program (OGS), and the Ontario Centre of Excellence
(OCE).
[15] Xu, Z.; Negishi, E.-I. Org. Lett. 2008, 10, 4311.
[16] P. D.; Sung, S.-Y.; Lee, K. Org. Lett. 2001, 3, 3201.
REFERENCES
ACS Paragon Plus Environment