A R T I C L E S
Ballesteros et al.
building blocks. Incorporating them into donor-acceptor sys-
tems together with, for example, fullerenes,14-16 perylenes,17
anthraquinones,18 or related metallomacrocycles19 gives rise to
long-lived and highly emissive charge-separated states. In this
context, we have recently demonstrated that anchoring a novel
titanium phthalocyanine to nanocrystalline TiO2 films affords
electron injection from the titanium phthalocyanine to the TiO2.20
Some previous work has reported on the preparation of CNT-
phthalocyanine composites21 or nanowires.22 These hybrid
materials show enhanced photoconductivity, as a result of
photoinduced charge transfer from the Pc excitons to CNT. On
the other hand, covalent functionalization of carbon nanotubes
with Pc moieties has also been reported by us23 and others24,25
through a reaction of the terminal carboxylic acid groups of
shortened chemically etched SWNT with amino-functionalized
phthalocyanines. However, the resulting materials proved to be
nearly insoluble in common organic solvents. The solubility/
dispersability of Pc-CNT material emerged as an indispensable
task to be resolved for a ready manipulation and a feasible
solution-phase processing of such nanohybrids into devices.
Moreover, most of the important photophysical analyses (i.e.,
identifying promising hybrids/conjugates for solar energy
conversion) are performed in condensed media.
The development of chemical strategies, aimed at solubilizing
SWNT, has lately driven the research in this area.26 In particular,
organic covalent functionalization at the sidewalls of carbon
nanotubes usually leads to very soluble materials.27,28 Deriva-
tization based on 1,3-dipolar cycloaddition of azomethine ylides,
generated by condensation of R-aminoacids and aldehydes, has
been shown to be a powerful methodology for functionalizing
and solubilizing CNT.26,29 This widely applicable approach
affords functionalized SWNT, in which the tubular structure is
preserved. Moreover, they are soluble enough to facilitate
manipulation and solution studies.
In the current work, we report on the preparation of new
dispersable ZnPc-SWNT hybrids through the Prato reaction of
HiPco SWNT, N-octylglycine, and adequately functionalized
ZnPc molecules, bearing six solubilizing groups and an alde-
hyde. Alternatively, a stepwise approach has been explored to
achieve a high degree of CNT functionalization at minimum
synthetic costs. Importantly, we complement our work with a
detailed photophysical investigation on ground- and excited-
state Pc-nanotube interactions.
(9) (a) Baskaran, D.; Mays, J. W.; Zhang, X. P.; Bratcher, M. S. J. Am. Chem.
Soc. 2005, 127, 6916. (b) Alvaro, M.; Atienzar, P.; de la Cruz, P.; Delgado,
J. L.; Troiani, V.; Garc´ıa, H.; Langa, F.; Palkar, A.; Echegoyen, L. J. Am.
Chem. Soc. 2006, 128, 6626. (c) Murakami, H.; Nomura, T.; Nakashima,
N. Chem. Phys. Lett. 2003, 378, 481. (d) Tanaka, H.; Yajima, T.;
Matsumoto, T.; Otsuka, Y.; Ogawa, T. AdV. Mater. 2006, 18, 1411. (e)
Hecht, D. S.; Ramirez, R. J. A.; Briman, M.; Artukovic, E.; Chichak, K.
S.; Stoddart, J. F.; Gruner, G. Nano Lett. 2006, 6, 2031. (f) Cheng, F.;
Adronov, A. Chem.-Eur. J. 2006, 12, 5053.
(10) (a) Guldi, D. M.; Rahman, G. M. A.; Jux, N.; Tagmatarchis, N.; Prato, M.
Angew. Chem., Int. Ed. 2004, 43, 5526. (b) Guldi, D. M.; Taieb, H.;
Rahman, G. M. A.; Tagmatarchis, N.; Prato, M. AdV. Mater. 2005, 17,
871. (c) Ehli, C.; Rahman, G. M. A.; Jux, N.; Balbinot, B.; Guldi, D. M.;
Paolucci, F.; Marcaccio, M.; Melle-Franco, M.; Zerbetto, F.; Campidelli,
S.; Prato, M. J. Am. Chem. Soc. 2006, 128, 11222.
(11) (a) Phthalocyanines: Properties and Aplications; Leznoff, C. C., Lever,
A. B. P., Eds.; VCH: Weinheim, 1989, 1993, 1996; Vols. 1-4. (b) The
Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.;
Academic Press: San Diego, CA, 2003; Vols. 15-20.
(12) McKeown, N. B. Phthalocyanine Materials: Synthesis, Structure and
Function; Cambridge University Press: Cambridge, 1998.
Results and Discussion
In general, two possible routes toward functionalizing SWNT
with ZnPc, see Scheme 1, could be considered, both following
the Prato protocol. The first route (route 1, Scheme 1) would
involve the former reaction of N-octylglycine30 and 4-formyl-
benzoic acid with SWNTs and subsequent esterification reaction
of the derivatized nanotube material with 2,3,9,10,16,17-hexa-
tert-butylphenoxy-2-hydroxymethylphthalocyaninate Zn(II) (1),
see Scheme 2. This approach is fairly advantageous, because,
as previously described,27-29 chemical modification of CNT
usually requires a large excess of the reactants. In this particular
case, one of them is the inexpensive 4-formylbenzoic acid.
Subsequent esterification reaction of the pyrrolidine-SWNT
bearing pendent COOH moieties and zinc(II) phthalocyanine 1
would proceed at nearly stoichiometric conditions (Scheme 1).
Pthalocyanine 1 was prepared by condensation of 4,5-tert-
butylphenoxyphthalonitrile31 and 4-hydroxymethylphthaloni-
trile18 in the presence of Zn(OAc)2 in 11% yield (Scheme 2).
The compound was characterized by standard spectroscopic
techniques. It is worth pointing out that the room-temperature
1H-NMR spectrum of this compound reveals an unusual
shielding of some of the aromatic signals (ca. 6.5 ppm in CDCl3,
6.9 in C2D4Cl4). In particular, those are affected that correspond
to the hydroxymethyl-containing isoindole units of the Pc core,
while the remaining aromatic protons appear at average chemical
(13) (a) de la Torre, G.; Va´zquez, P.; Agullo´-Lo´pez, F.; Torres, T. Chem. ReV.
2004, 104, 3723. (b) de la Torre, G.; Claessens, C. G.; Torres, T. Chem.
Commun., in press.
(14) (a) Guldi, D. M.; Gouloumis, A.; Va´zquez, P.; Torres, T. Chem. Commun.
2002, 2056. (b) Loi, M. A.; Neugebauer, H.; Denk, P.; Brabec, C. J.;
Sariciftci, N. S.; Gouloumis, A.; Va´zquez, P.; Torres, T. J. Mater. Chem.
2003, 13, 700. (c) Guldi, D. M.; Zilbermann, I.; Gouloumis, A.; Va´zquez,
P.; Torres, T. J. Phys. Chem. B 2004, 108, 18485. (d) Gouloumis, A.; de
la Escosura, A.; Va´zquez, P.; Torres, T.; Kahnt, A.; Guldi, D. M.;
Neugebauer, H.; Winder, C.; Drees, M.; Sariciftci, N. S. Org. Lett. 2006,
8, 5187.
(15) Guldi, D. M.; Gouloumis, A.; Va´zquez, P.; Torres, T.; Georgalikas, V.;
Prato, M. J. Am. Chem. Soc. 2005, 127, 5811.
(16) (a) de la Escosura, A.; Mart´ınez-D´ıaz, M. V.; Guldi, D. M.; Torres, T. J.
Am. Chem. Soc. 2006, 128, 4112. (b) Guldi, D. M.; Ramey, J.; Mart´ınez-
D´ıaz, M. V.; de la Escosura, A.; Torres, T.; Da Ros, T.; Prato, M. Chem.
Commun. 2002, 2774. (c) Ballesteros, B.; de la Torre, G.; Hug, G. L.;
Rahman, G. M. A.; Guldi, D. M. Tetrahedron 2006, 62, 2097. (d) Torres,
T.; Gouloumis, A.; Sanchez-Garc´ıa, D.; Jayawickramarajah, J.; Seitz, W.;
Guldi, D. M.; Sessler, J. L. Chem. Commun. 2007, 292.
(17) Rodr´ıguez-Morgade, M. S.; Torres, T.; Atienza-Castellanos, C.; Guldi, D.
M. J. Am. Chem. Soc. 2006, 128, 15145.
(18) Gouloumis, A.; Gonzalez-Rodriguez, D.; Vazquez, P.; Torres, T.; Liu, S.;
Echegoyen, L.; Ramey, J.; Hug, G. L.; Guldi, D. M. J. Am. Chem. Soc.
2006, 128, 12674.
(19) (a) Gonza´lez-Rodr´ıguez, D.; Claessens, C. G.; Torres, T.; Liu, S.-G.;
Echegoyen, L.; Vila, N.; Novell, S. Chem.-Eur. J. 2005, 11, 3881. (b)
Claessens, C. G.; Torres, T. Angew. Chem., Int. Ed. 2002, 41, 2561. (c)
Claessens, C. G.; Torres, T. J. Am. Chem. Soc. 2002, 124, 14522. (d) Garc´ıa-
Frutos, E. M.; Ferna´ndez-La´zaro, F.; Maya, E. M.; Va´zquez, P.; Torres, T.
J. Org. Chem. 2000, 65, 6841.
(26) Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Chem.-Eur. J. 2003,
9, 4001.
(27) (a) Hirsch, A. Angew. Chem., Int. Ed. 2002, 41, 1853. (b) Niyogi, S.;
Hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M. E.;
Haddon, R. C. Acc. Chem. Res. 2002, 35, 1105. (c) Dyke, C. A.; Tour, J.
M. J. Phys. Chem. A 2004, 51, 11151.
(20) Palomares, E.; Mart´ınez-D´ıaz, M. V.; Haque, S. A.; Torres, T.; Durrant, J.
R. Chem. Commun. 2004, 2112.
(21) Cao, L.; Chen, H.; Wang, M.; Sun, J.; Zhang, X.; Kong, F. J. Phys. Chem.
B 2002, 106, 8971.
(28) (a) Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. AdV. Mater. 2005, 17,
17. (b) Hirsch, A.; Vostrowsky, O. Top. Curr. Chem. 2005, 245, 193. (c)
Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. ReV. 2006, 106,
1105.
(22) Cao, L.; Chen, H.-Z.; Zhou, H.-B.; Zhu, L.; Sun, J.-Z.; Zhang, X.-B.; Xu,
J.-M.; Wang, M. AdV. Mater. 2003, 15, 909.
(23) de la Torre, G.; Blau, W.; Torres, T. Nanotechnology 2003, 14, 765.
(24) Yang, Z.-L.; Chen, H.-Z.; Cao, L.; Li, H.-Y.; Wang, M. Mater. Sci. Eng.,
B 2004, 106, 73.
(29) Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.;
Hirsch, A. J. Am. Chem. Soc. 2002, 124, 760.
(30) Segura, M.; Sa´nchez, L.; de Mendoza, J.; Mart´ın, N.; Guldi, D. M. J. Am.
Chem. Soc. 2003, 125, 15093.
(25) Xu, H.-B.; Chen, H.-Z.; Shi, M.-M.; Bai, R.; Wang, M. Mater. Chem. Phys.
2005, 94, 342.
(31) Maree, S. E.; Nyokong, T. J. Porphyrins Phthalocyanines 2001, 5, 782.
9
5062 J. AM. CHEM. SOC. VOL. 129, NO. 16, 2007