Angewandte
Chemie
of a Patterson synthesis (3a, 3), which yielded the position of the
metal atoms, and conventional difference Fourier methods. All non-
hydrogen atoms were refined anisotropically by full-matrix least-
squares calculations on F2 using SHELXL-97[26] within the X-seed
environment.[27,28] The hydrogen atoms were fixed in calculated
positions. X-seed was used to generate the various figures of the
complexes.
CCDC-626605–626609 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
Received: November 10, 2006
Published online: February 28, 2007
Keywords: aurophilicity · fluorinated ligands · gold ·
.
ligand scrambling · radical transfer
Figure 3. The organization of 1 in an infinite chain along the a axis.
Thermal ellipsoids are set at 25% probability. Hydrogen atoms and
ether molecules are omitted for clarity. Selected bond lengths [] and
angles [8]: C111-Au1 2.014(9), C121-Au2 2.03(1), S1-Au1 2.317(3),
S2-Au2 2.320(3), Au1···Au2 3.306(1), Au2···Au2’ 3.191(2), Au1’···Au1’’
3.128(2); C111-Au1-S1 176.3(3), C121-Au2-S2 178.0(3).
[1]L. Cattalini, M. Martelli, G. Marangoni, Inorg. Chem. 1968, 7,
1492 – 1495.
[2]L. G. Vaughan, W. A. Sheppard, J. Organomet. Chem. 1970, 22,
739 – 742.
[3]a) R. Usón, A. Laguna in Organometallic Synthesis, Vol. 3 (Eds.:
R. B. King, J. J. Eisch), Elsevier, Amsterdam, 1986, pp. 322 – 342;
b) R. Usón, A. Laguna in Organometallic Synthesis, Vol. 4 (Eds.:
R. B. King, J. J. Eisch), Elsevier, Amsterdam, 1988, pp. 342 – 353.
[4]For example, see: a) M. C. Gimeno, A. Laguna in Comprehen-
sive Coordination Chemistry II, Vol. 6 (Eds.: J. A. McCleverty,
T. J. Meyer) 1st ed., Elsevier, Oxford, 2004, pp. 990 – 1145; b) A.
Grohmann, H. Schmidbaur in Comprehensive Organometallic
Chemistry II (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), 1st
ed., Elsevier Science, Oxford, 1995, pp. 1 – 56.
[5]a) S. Wang, J. P. Fackler, Jr. in The Chemistry of Organic
Derivatives of Gold and Silver, Vol. 6 (Eds.: S. Patai, Z.
Rappoport) 2nd ed., Wiley, Chichester, 1999, pp. 431 – 450;
b) H. Schmidbaur, A. Grohmann, M. E. Olmos, A. Schier in The
Chemistry of Organic Derivatives of Gold and Silver, Vol. 6
(Eds.: S. Patai, Z. Rappoport), 2nd ed., Wiley, Chichester, 1999,
pp. 271 – 272.
[6]S. A. Yurin, D. A. Lemenovskii, K. I. Grandberg, I. G. Llꢀina,
L. G. Kuzꢀmina, Russ. Chem. Bull. Int. Ed. 2003, 52, 2752 – 2753.
[7]V. W. W. Yam, S. W. K. Choi, K. K. Cheung, Chem. Commun.
1996, 1173 – 1174.
[8]V. W. W. Yam, C. K. Li, C. L. Chan, K. K. Cheung, Inorg. Chem.
2001, 40, 7054 – 7058.
[9]P. G. Jones, Z. Kristallogr. 1993, 208, 347 – 350.
[10]L. E. Orgel, J. Chem. Soc. 1958, 4186 – 4190.
[11]S. Cronje, H. G. Raubenheimer, H. S. C. Spies, C. Esterhuysen,
H. Schmidbaur, A. Schier, G. J. Kruger, Dalton Trans. 2003,
2859 – 2866.
angles (42.858) between the independent monomers are
observed.
The small torsion angles of the latter result in greater
steric hindrance and weaker Au···Au interactions, as is evident
À
from the observed bond lengths. The Au S bond lengths
present in the structure (2.317(3) and 2.320(3) ) do not
deviate significantly from those observed for [Au(tht)2]
[C6H4NO4S2](2.292(2) ) and [Au(tht) 2][AuI2](2.306(7),
2.335(6) ).[20,21] The observed Au C bond lengths
À
(2.014(9), 2.03(1) ) can be compared to those in [Au(C6F5)-
[11]
=
=
{S CK N(H)C(CH3) C(H)SL }](2.06(1) ).
Herein we have reported the first aryl- and thiophene-
containing gold(II) complex, which could be formed by
radical transfer and gold–gold bond formation, as well as a
gold(I) and two gold(III) compounds that contain the same
ligands. One of the latter products resulted from a novel
ligand-scrambling (metathesis or disproportionation) reac-
tion. In all the complexes (independent of charge) that
À
contain a {C6F5-Au-C6F5} unit, the Au C bond lengths
decrease in the order AuII > AuIII > AuI (ca. 2.11, 2.06, and
À
2.04 ). A similar variation is found for the Au S separation
in the {tht-AuIII-C6F5}, {tht-AuIII-tht}, {tht-AuII-AuII}, and {tht-
AuI-C6F5} fragments (ca. 2.36, 2.34, 2.42, and 2.32 ). Theo-
retical studies are underway.
[12]R. Usón, A. Laguna, M. Laguna, M. Luz Castilla, P. J. Jones, C.
Fittschen, J. Chem. Soc. Dalton Trans. 1987, 3017 – 3022.
[13]J. Stein, J. P. Fackler, Jr., C. Paparizos, H. W. Chen, J. Am. Chem.
Soc. 1981, 103, 2192 – 2198.
Experimental Section
[14]For example, see: a) S. Ahmad, Coord. Chem. Rev. 2004, 248,
231 – 243; b) S. Onaka, Y. Katsukawa, M. Shiotsuka, O. Kane-
gawa, M. Yamashita, Inorg. Chim. Acta 2001, 312, 100 – 110;
c) A. L. Hormann-Arendt, C. F. Shaw, Inorg. Chem. 1990, 29,
4683 – 4687.
[15]a) P. G. Jones, E. Bembenek, Z. Kristallogr. 1994, 209, 690 – 692;
b) H. H. Murray, J. P. Fackler, Jr., L. C. Porter, D. A. Briggs,
M. A. Guerra, R. J. Lagow, Inorg. Chem. 1987, 26, 357 – 363.
[16]F. Mohr, E. Cerrada, M. Laguna, Organometallics 2006, 25, 644 –
648.
The preparation of compounds 1–4 is described in detail in the
Supporting Information.
X-ray structure determinations and data collection: Suitable
single crystals for X-ray structural analysis were obtained by
crystallization from concentrated diethyl ether solutions layered
with n-hexane or n-pentane. Data sets for 1, 2, 3, and 4 were collected
on a Bruker SMART Apex CCD difractometer[22] with graphite-
monochromated MoKa radiation (l = 0.71073 ). Data reduction was
carried out with standard methods from the software package Bruker
SAINT.[23] SMART data were treated with SADABS.[24, 25] The
structures were solved by direct methods (1, 3b, 4) or interpretation
[17]a) R. J. Puddephatt in Comprehensive Organometallic Chemistry
I, Vol. 2 (Eds.: E. J. Abel, F. J. Stone, G. Wilkinson), 2nd ed.,
Angew. Chem. Int. Ed. 2007, 46, 2497 –2500
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim