Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Basel, 2013, 3, 55-69. (f) B.Sims, BiodiDesOeI:l1M0.a10g3a9z/iDn0eC. CO0c2t8o8b4eCr
25, 2011. (g) S. J. Sarma, S. K. Brar, E. B. Sydney, Y. Le Bihan,
G. Buelna and C. R. Soccol, Int. J. Hydrogen Energ., 2012, 37,
6473-6490; (h) R. H. Crabtree, Chem. Rev., 2017, 117, 9228-
9246; (i) K. Sordakis, C. Tang, L. K. Vogt, H. Junge, P. J. Dyson,
M. Beller and G. Laurenczy, Chem. Rev., 2018, 118, 372-433;
(j) A. Kumar, S. Semwal and J. Choudhury, ACS Catal., 2019, 9,
2164-2168; (k) J. M. Heltzel, M. Finn, D. Ainembabazi, K. Wang
and A. M. Voutchkova-Kostal, Chem. Commun., 2018, 54,
6184-6187. (l) A. Talebian-Kiakalaieh, N. A. S. Amin, K. Rajaei
and S. Tarighi, Appl. Energy, 2018, 230, 1347-1379.
Figure 3. Space filling model of the TS 7 depicting the steric crowding around ruthenium.
(TS 7c; ΔG⧧140 = 16.17 kcal/mol) is about 1.96 folds (TS 7 barrier
in entries 1 and 3 Table 3) lower but also because the
hydride elimination is downhill by 6.54 kcal/mol (G140 for
entries 1 and 3 Table 3) in comparison with 1a (Figure 2). This
results in a significant build-up of glyceraldehyde in reactions
catalyzed by 1c/1d in stark contrast to 1a where the equilibrium
is more towards the left (6a + 3). The open vessel conditions
ensure that the equilibrium for the subsequent step (8c +3
6c+H2) is more towards the right. Furthermore, among 1c/1d
and 1a, the barrier for the RDS with 1c/1d is lower by about
10.39 kcal/mol (Ts:9c, TS:7a, Table 3). Despite the fact that the
generation of the active catalyst 6 starting from 1c and 1d is
comparable to 1a (Table 3), the favourable energetics that is
attributable to lower steric encumbrance (Figure 3) around the
Ru centre makes the catalysis with 1c/1d more conducive. It is
interesting to note that the inclusion of higher basis set or
dispersion corrections has minimal affect on the overall
energetics and no affect on the trend of the results (Table S3).
The utility of NNN pincerruthenium complexes (1ad) towards
synthesis of LA from glycerol has been demonstrated. Catalysts
based on 2,6bis(benzimidazole2yl) pyridine ligands not only
have optimal RuP bond energy that facilitates easy generation
of active catalyst, but also enjoys less steric crowding around
the Ru center that leads to favorable energetics making them
highly efficient catalysts.
4
5
M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina and B.
F. Sels, Energy Environ. Sci., 2013, 6, 1415-1442.
(a) A. C. C. de Souza and J. L. Silveira, Renew. Sust. Energ. Rev.,
2011, 15, 1835-1850; (b) G. W. Huber, J. W. Shabaker and J. A.
Dumesic, Science, 2003, 300, 2075-2077; (c) D. L. King, L.
Zhang, G. Xia, A. M. Karim, D. J. Heldebrant, X. Wang, T.
Peterson and Y. Wang, Appl. Catal., 2010, 99, 206-213; (d) S.
H. Cho and D. J. Moon, J. Nanosci. Nanotechnol., 2011, 11,
7311-7314; (e) F. Díaz Alvarado and F. Gracia, Int. J. Hydrogen
Energy, 2012, 37, 14820-14830; (f) J.-J. Wang, Z.-J. Li, X.-B. Li,
X.-B. Fan, Q.-Y. Meng, S. Yu, C.-B. Li, J.-X. Li, C.-H. Tung and L.-
Z. Wu, ChemSusChem, 2014, 7, 1468-1475; (g) Z. Jiang, Z.
Zhang, T. Wu, P. Zhang, J. Song, C. Xie and B. Han, Chem. Asian
J., 2017, 12, 1598-1604; (h) S. M. A. H. Siddiki, A. S. Touchy, K.
Kon, T. Toyao and K.-i. Shimizu, ChemCatChem, 2017, 9, 2816-
2821; (i) G. Dodekatos, S. Schünemann and H. Tüysüz, ACS
Catal., 2018, 8, 6301-6333; (j) W. Oberhauser, C. Evangelisti,
A. Liscio, A. Kovtun, Y. Cao and F. Vizza, J. Catalysis, 2018, 368,
298-305; (k) S. Feng, K. Takahashi, H. Miura and T. Shishido,
Fuel Process. Technol., 2020, 197, 106202; (l) R. Palacio, D.
López and D. Hernández, J. Nanopart. Res., 2019, 21, 1-13; (m)
C. S. Lee, M. K. Aroua, W. A. Wan Daud, P. Cognet, Y. Pérès
and M. A. Ajeel, Front. Chem., 2019, 7, 110; (n) S. A.
Zavrazhnov, A. L. Esipovich, S. Y. Zlobin, A. S. Belousov and A.
V. Vorotyntsev, Catalysts, 2019, 9, 21.
(a) S. Werkmeister, J. Neumann, K. Junge and M. Beller,
Chem.Eur. J., 2015, 21, 12226-12250; (b) D. H. Nguyen, Y.
Morin, L. Zhang, X. Trivelli, F. Capet, S. Paul, S. Desset, F.
Dumeignil and R. M. Gauvin, ChemCatChem, 2017, 9, 2652-
2660; (c) L. Chen, S. J. Ren and X. P. Ye, React. Kinet. Mech.
Catal., 2015, 114, 93-108; (d) Z. Lu, V. Cherepakhin, I.
Demianets, P. J. Lauridsen and T. J. Williams, Chem. Commun.,
2018, 54, 7711-7724. (e) L. S. Sharninghausen, J. Campos, M.
G. Manas and R. H. Crabtree, Nat. Commun., 2014, 5, 5084. (f)
Y. Li, M. Nielsen, B. Li, P. H. Dixneuf, H. Junge and M. Beller,
Green Chem., 2015, 17, 193-198. (g) L. S. Sharninghausen, B.
Q. Mercado, R. H. Crabtree and N. Hazari, Chem. Commun.,
2015, 51, 16201-16204. (h) Z. Sun, Y. Liu, J. Chen, C. Huang and
T. Tu, ACS Catal., 2015, 5, 6573-6578. (i) Z. Lu, I. Demianets,
R. Hamze, N. J. Terrile and T. J. Williams, ACS Catal., 2016, 6,
2014-2017. (j)M. Finn, J. A. Ridenour, J. Heltzel, C. Cahill and
A. Voutchkova-Kostal, Organometallics, 2018, 37, 1400-1409.
(a) K. Das, M. Dutta, B. Das, H. K. Srivastava and A. Kumar, Adv.
Synth. Catal., 2019, 361, 2965-2980. (b) K. Das, P. G. Nandi, K.
Islam, H. K. Srivastava and A. Kumar, Eur. J. Org. Chem., 2019,
2019, 6855-6866. (c) D. Mishra, S. Naskar, S. K.
Chattopadhyay, M. Maji, P. Sengupta, R. Dinda, S. Ghosh and
T. C. W. Mak, Transition Met. Chem., 2005, 30, 352-356; (d) D.
J. Braden, R. Cariou, J. W. Shabaker and R. A. Taylor, Appl.
Catal. A-Gen., 2019, 570, 367-375. (e) Z. Dai, Q. Luo, X. Meng,
R. Li, J. Zhang and T. Peng, J. Organomet. Chem., 2017, 830,
11-18. (f) F. Simal, L. Wlodarczak, A. Demonceau and A. F.
Noels, Tetrahedron Lett., 2000, 41, 6071-6074.
6
A.K. (CRG/2018/000607) and H.K.S (SB/S2/RJN/004-2015)
thanks the SERB, DST, India. Thanks to IITG (DSTFIST program,
ParamIshan, & CIF) and NIPER Guwahati for various facilities.
Conflicts of interest
There are no conflicts to declare
Notes and references
‡ CCDC 1998012 and CCDC 2009680 contains the supplementary
crystallographic data for this paper and can be obtained free of
7
1
2
3
F. Cherubini, Energy Conv. Manag., 2010, 51, 1412-1421.
R. H. Crabtree, ACS Sustain. Chem. Eng., 2019, 7, 15845-53.
(a) P. D. Vaidya and A. E. Rodrigues, Chem. Eng. Technol.,
2009, 32, 1463-1469. (b) D. M. Alonso, S. G. Wettstein and J.
A. Dumesic, Chem. Soc. Rev., 2012, 41, 8075-8098. (c) P. T.
Anastas and J. B. Zimmerman, Innovations in Green Chemistry
and Green Engineering: Selected Entries from the
Encyclopedia of Sustainability Science and Technology,
Springer Science & Business Media, 2012. (d) E. D.-Á. Alba, F.
4 | J. Name., 2012, 00, 1-4
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins