D. F. Burdi et al. / Bioorg. Med. Chem. Lett. 17 (2007) 3141–3145
3145
3. (a) Imai, T.; Chantry, D.; Raport, C. J.; Wood, C. L.;
Nishimura, M.; Godiska, R.; Yoshie, O.; Gray, P. W.
J. Biol. Chem. 1998, 273, 1764; (b) Imai, T.; Baba, M.;
Nishimura, M.; Kakizaki, M.; Takagi, S.; Yoshie, O.
J. Biol. Chem. 1997, 272, 15036; (c) Wang, Y.; Zhang, Y.;
Yang, X.; Han, W.; Liu, Y.; Xu, Q.; Zhao, R.; Di, C.;
Song, Q.; Ma, D. Life Sci. 2006, 78, 614.
Dairaghi, D. J.; Schall, T. J.; Collins, T. L.; Medina, J. C.
Bioorg. Med. Chem. Lett. 2006, 16, 2800.
8. For a recent review, see Purandare, A. V.; Somerville, J. E.
Curr. Top. Med. Chem. 2006, 6, 1335.
9. All compounds were characterized by LC/MS and 1H
NMR. Chiral HPLC analysis of 7 and 8 revealed an
enantiomeric excess (ee) of >98%.
4. Kim, C. H.; Rott, L.; Kunkel, E. J.; Genovese, M. C.;
Andrew, D. P.; Wu, L.; Butcher, E. C. J. Clin. Invest.
2001, 108, 1331.
10. This screen is based on the use of a stable Chinese hamster
ovary cell line that overexpresses recombinant CCR4
receptor and Ga16 protein, whose activation causes
intracellular calcium mobilization. Agonist-promoted
increases in intracellular calcium were detected with a
fluorescence imaging plate reader (FLIPR) using a cal-
cium-sensitive dye. The ability of compounds to antago-
nize binding of MDC or TARC to cell surface CCR4 is
reflected in the reduction of fluorescence signal relative to
positive controls. Final assay volume is 60 lL. Final
concentrations of key components are as follows: MDC:
15 nM or TARC: 10 nM; Test compound: variable;
dimethylsulfoxide 1.0% (v/v), bovine serum albumin:
1.0 mg/mL; HEPES: 20 mM; probenecid: 2.5 mM;
10,000 cells per well. A counterscreen against UTP was
performed in parallel in order to screen out cytotoxic
molecules. Good correlations between Ki values were
observed when comparing assays utilizing TARC and
MDC as ligands.
5. (a) Gonzalo, J.-A.; Pan, Y.; Lloyd, C. M.; Jia, G.-Q.; Yu,
G.; Dussault, B.; Powers, C. A.; Proudfoot, A. E. I.;
Coyle, A. J.; Gearing, D.; Gutierrez-Ramos, J.-C.
J. Immunol. 1999, 163, 403; (b) Kawasaki, S.; Takizawa,
H.; Yoneyama, H.; Nakayama, T.; Fujisawa, R.; Izumi-
zaki, M.; Imai, T.; Yoshie, O.; Homma, I.; Yamamoto,
K.; Matsushima, K. J. Immunol. 2001, 166, 2055.
6. Schuh, J. M.; Power, C. A.; Proudfoot, A. E. I.; Kunkel,
S. L.; Lukacs, N. W.; Hogaboam, C. M. FASEB J. 2002,
16, 1313.
7. (a) Allen, S.; Newhouse, B.; Anderson, A. S.; Fauber, B.;
Allen, A.; Chantry, D.; Eberhardt, C.; Odingo, J.;
Burgess, L. E. Bioorg. Med. Chem. Lett. 2004, 14, 1619;
(b) Purandare, A. V.; Wan, H.; Gao, A.; Somerville, J.;
Burke, C.; Vaccaro, W.; Yang, X.; McIntyre, K. W.; Poss,
M. A. Bioorg. Med. Chem. Lett. 2006, 16, 204; (c) Wang,
X.; Xu, F.; Xu, Q.; Mahmud, H.; Houze, J.; Zhu, L.;
Akerman, M.; Tonn, G.; Tang, L.; McMaster, B. E.;
11. Mirsadeghi, S.; Prasad, G. K. B.; Whittaker, N.; Thakker,
D. R. J. Org. Chem. 1989, 54, 3091.