D’hooghe et al.
SCHEME 1
the computational viewpoint the system under study is chal-
lenging, as the solvent might be crucial for predicting the correct
reaction preference. To validate the importance of the incorpora-
tion of the molecular environment, the reaction route was
modeled at various levels of theory: in the gas phase, with
inclusion of explicit solvent molecules, and by embedding in a
continuum characterized by a dielectric constant which is
characteristic for the solvent. The latter was found to be im-
portant in other studies to capture the bulk electrostatic effects.11
carnitine palmitoyltransferase-2.5 Because of the medicinal
relevance of the latter amino acids, a variety of 3,4-diaminobu-
tanoic acid derivatives have been prepared, mostly starting from
aspartic acid derivatives,6 and evaluated as inhibitors of carnitine
palmitoyl transferase.7 However, very little effort has been made
toward the synthesis of their nitrile precursors, i.e., 3,4-diamino-
butanenitriles, as an alternative approach toward this valuable
class of compounds.8
Results and Discussion
The synthesis of 1-arylmethyl-2-(cyanomethyl)aziridines 6
as suitable synthons in organic chemistry has been reported
previously by treatment of 1-arylmethyl-2-(bromomethyl)-
aziridines,12 a peculiar yet promising class of â-halo amines,
with 1 equiv of potassium cyanide in DMSO and heating at
60-70 °C for 3 h.13 The combination of an aziridine moiety
and a cyano group in these unexplored substrates enables the
preparation of a variety of functionalized amino nitriles through
ring opening reactions of the constrained ring.
Only a limited number of reports are available on the
regioselective ring opening of 2-substituted aziridinium salts
(different from 2-aryl or 2-acyl substitution) at the more hindered
aziridine carbon atom.14 This unique feature offers a useful tool
in targeted organic synthesis and is considered as an important
synthetic advantage of nonactivated 2-substituted aziridines with
regard to their activated counterparts.
Although the preparation of 1,2-diamines from aziridines is
known in the literature,9 no reports are available on the synthesis
of 3,4-diaminobutanenitriles starting from suitably substituted
aziridine derivatives. From a retrosynthetic point of view, the
ring opening of 2-(cyanomethyl)aziridines 3 could offer an easy
access to 3,4-diaminobutanenitriles 4 and/or 5 depending on
the regioselectivity of this ring opening (Scheme 1).
In the present report, an elegant and straightforward approach
toward novel 4-(N,N-bis(arylmethyl)amino)-3-(pyrrolidin-1-yl)-
butanenitriles and 4-(N,N-bis(arylmethyl)amino)-2-butenenitriles
from 1-arylmethyl-2-(cyanomethyl)aziridines is described via
regiospecific ring opening of intermediate aziridinium salts. The
exclusive attack of bromide and pyrrolidine at the more hindered
aziridine carbon atom in the ring opening of 2-(cyanomethyl)-
aziridinium salts is rationalized on the basis of ab initio
calculations. At present, very few in-depth theoretical studies
on the ring opening of aziridinium salts are available.10 From
Treatment of aziridines 6 with 1 equiv of an arylmethyl
bromide in acetonitrile afforded novel 4-amino-3-bromobutane-
nenitriles 8 in good yields after several days at room temperature
(Scheme 2, Table 1). In this transformation, the arylmethyl
bromide is responsible for both the activation of the aziridine
ring toward an aziridinium intermediate and the delivery of the
nucleophilic bromide anion which induces ring opening of the
aziridinium ion. Since only one similar compound has been
reported in the literature, i.e., N-(2-bromo-3-cyanopropyl)-
succinimide,15 the presented methodology offers an elegant
approach toward this new class of versatile substrates 8 suitable
for further elaboration because of the presence of a γ-amino
nitrile moiety and a â-bromo amine in one structural entity.
In accordance with the previously observed reactivity of
2-(bromomethyl)-, 2-(aryloxymethyl)-, and 2-(alkanoyloxy-
methyl)aziridines toward arylmethyl bromides in acetonitrile,16
a regioselective ring opening of the intermediate 2-(cyanometh-
yl)aziridinium salts 7 by bromide occurred at the more hindered
(5) (a) Kanamara, T.; Shinagawa, S.; Asai, M.; Okazaki, H.; Sugiyama,
Y.; Fuijita, T.; Iwatsuka, H.; Yoneda, M. Life Sci. 1985, 37, 217. (b) Chiodi,
P.; Maccari, F.; Ramacci, M. T. Biochim. Biophys. Acta 1992, 1127, 81.
(6) (a) Thierry, J.; Servajean, V. Tetrahedron Lett. 2004, 45, 821. (b)
Calvisi, G.; Dell’Uomo, N.; De Angelis, F.; Dejas, R.; Giannessi, F.; Tinti,
M. O. Eur. J. Org. Chem. 2003, 4501. (c) Abdel-Aziz, M.; Yamasaki, T.;
Otsuka, M. Bioorg. Med. Chem. Lett. 2003, 13, 1041. (d) Bruckner, A. M.;
Schmitt, H. W.; Diederichsen, U. HelV. Chim. Acta 2002, 85, 3855. (e)
Markidis, T.; Kokotos, G. J. Org. Chem. 2001, 66, 1919. (f) Misiti, D.;
Santaniello, M.; Zappla, G. Synth. Commun. 1992, 22, 883.
(7) Giannessi, F.; Tassoni, E.; Tinti, M. O.; Conti, R.; Dell’uomo, N.;
Brunetti, T. PCT Int. Appl. WO 2006092204 A1, 2006; Chem. Abstr. 2006,
145, 293349.
(8) (a) Jones, D. S.; Srinivasan, A.; Kasina, S.; Fritzberg, A. R.;
Wilkening, D. W. J. Org. Chem. 1989, 54, 1940. (b) Gmeiner, P.; Hummel,
E.; Haubmann, C.; Ho¨fner, G. Arch. Pharm. (Weinheim) 1995, 328, 265.
(c) Einsiedel, J.; Hubner, H.; Gmeiner, P. Bioorg. Med. Chem. Lett. 2003,
13, 851. (d) Baeza, A.; Casas, J.; Na´jera, C.; Sansano, J. M. J. Org. Chem.
2006, 71, 3837.
(9) From nonactivated aziridines: (a) Anand, R. V.; Pandey, G.; Singh,
V. K. Tetrahedron Lett. 2002, 43, 3975. (b) Katagiri, T.; Takahashi, M.;
Fujiwara, Y.; Ihara, H.; Uneyama, K. J. Org. Chem. 1999, 64, 7323. (c)
Sekar, G.; Singh, V. K. J. Org. Chem. 1999, 64, 2537. (d) Padwa, A.; Dent,
W. J. Org. Chem. 1987, 52, 235.
(10) (a) Bouyacoub, A.; Jean, Y.; Volatron, F. J. Mol. Struct.
(THEOCHEM) 1996, 371, 51. (b) Silva, M. A.; Goodman, J. M. Tetrahedron
Lett. 2005, 46, 2067.
(11) (a) Van Speybroeck, V.; Moonen, K.; Hemelsoet, K.; Stevens, C.
V.; Waroquier, M. J. Am. Chem. Soc. 2006, 128, 8468. (b) Ando, K. J.
Am. Chem. Soc. 2005, 127, 3964. (c) Pratt, L. M.; Streitwieser, A. J. Org.
Chem. 2003, 68, 2830.
(12) (a) De Kimpe, N.; Jolie, R.; De Smaele, D. J. Chem. Soc., Chem.
Commun. 1994, 1221. (b) De Kimpe, N.; De Smaele, D.; Szakonyi, Z. J.
Org. Chem. 1997, 62, 2448. (c) D’hooghe, M.; Waterinckx, A.; De Kimpe,
N. J. Org. Chem. 2005, 70, 227. (d) D’hooghe, M.; Rottiers, M.; Jolie, R.;
De Kimpe, N. Synlett 2005, 931.
(13) (a) D’hooghe, M.; Mangelinckx, S.; Persyn, E.; Van Brabandt, W.;
De Kimpe, N. J. Org. Chem. 2006, 71, 4232. (b) D’hooghe, M.; Vervisch,
K.; Van Nieuwenhove, A.; De Kimpe, N. Tetrahedron Lett. 2007, 48, 1771.
(14) For a recent example, see: Savoia, D.; Alvaro, G.; Di Fabio, R.;
Gualandi, A.; Fiorelli, C. J. Org. Chem. 2006, 71, 9373.
(15) Bailey, W. J.; Bello, J. J. Org. Chem. 1955, 20, 525.
(16) (a) D’hooghe, M.; Van Brabandt, W.; De Kimpe, N. J. Org. Chem.
2004, 69, 2703. (b) D’hooghe, M.; Waterinckx, A.; Vanlangendonck, T.;
De Kimpe, N. Tetrahedron 2006, 62, 2295. (c) D’hooghe, M.; Van
Speybroeck, V.; Waroquier, M.; De Kimpe, N. Chem. Commun. 2006, 1554.
(d) D’hooghe, M.; De Kimpe, N. Synlett 2006, 2089.
4734 J. Org. Chem., Vol. 72, No. 13, 2007