Cyclometalated Ruthenium Complexes with Substituted Phenylpyridines
FULL PAPER
V. Balzani, F. Barigelletti, L. De Cola, L. Flamigni, Chem. Rev.
1994, 94, 993–1019.
M. I. Bruce, B. L. Goodall, F. G. A. Stone, J. Organomet.
Chem. 1973, 60, 343–348.
K. Hiraki, Y. Obayashi, Y. Oki, Bull. Chem. Soc. Jpn. 1979, 52,
1372–1376.
E. C. Constable, J. M. Holmes, J. Organomet. Chem. 1986, 301,
203–208.
J. P. Collin, M. Beley, J. P. Sauvage, F. Barigeletti, Inorg. Chim.
Acta 1991, 186, 91–93.
P. Reveco, R. H. Schmehl, W. R. Cherry, F. R. Fronczek, J. Sel-
bin, Inorg. Chem. 1985, 24, 4078–4082.
8.14 (td, J = 8.4 and 1.5 Hz, 1 H, H24), 8.09 (d, J = 8.2 Hz, 1 H,
H4), 8.02 (ddd, J = 5.4, 1.6 and 0.8 Hz, 1 H, H22), 8.00 (ddd, J =
7.6, 5 and 0.5 Hz, 1 H, H29), 7.98 (ddd, J = 7.6, 5 and 0.5 Hz, 1
H, H14), 7.95 (m, 1 H, H19), 7.93 (m, 1 H, H21), 7.88 (ddd, J =
5.7, 1.4 and 0.8 Hz, 1 H, H12), 7.82 (d, J = 8.3 Hz, 1 H, H11), 7.64
(ddd, J = 8.3, 1.1 and 0.7 Hz, 1 H, H3), 7.59 (ddd, J = 7.5, 5.4 and
0.8 Hz, 1 H, H23), 7.57 (d, J = 1.2 Hz, 1 H, H1), 7.44–7.37 (m, 2
H, H30, H20), 7.42 (dd, J = 5.8 and 1.5 Hz, 1 H, H13), 7.04 (dd,
[2]
[3]
[4]
[5]
J = 8.3 and 2.1 Hz, 1 H, H10), 6.54 (d, J = 2.1 Hz, 1 H, H8), 2.08
(s, 3 H, CH3) ppm. 13C NMR (CD3COCD3): δ = 196.20 (C7),
[6]
163.95 (C5), 157.77 (C27), 157.07 (C16), 156.74 (C17), 155.32
(C26), 154.18 (C31), 150.39 (C21), 150.12 (C12), 149.98 (C1),
149.17 (C22), 144.86 (C6), 137.02 (C8), 136.93 (C3), 136.70 (C24),
135.38 (C29), 134.32 (C14), 134.20 (C19), 132.68 (C2), 127.27
(C23), 126.73 (C30), 126.55 (C20), 126.37 (C13), 125.32 (C11),
123.73 (C28), 123.67 (C9), 123.54 (C10), 123.45 (C25), 123.27
(C18), 123.25 (C15), 118.77 (C4), 17.19 (CH3) ppm. FAB-MS: m/z
(%) = 662 (45), 660 (43) [M–OTf]+.
[7]
a) A. J. Lees, Chem. Rev. 1987, 87, 711–743; b) S. Chodorowski-
Kimmes, M. Beley, J. P. Collin, J. P. Sauvage, Tetrahedron Lett.
1996, 37, 2963–2966; c) F. Barigelletti, B. Ventura, J. P. Collin,
R. Kayhanian, P. Gavina, J. P. Sauvage, Eur. J. Inorg. Chem.
2000, 113–119.
F. Mongin, G. Quéguiner, Tetrahedron 2001, 57, 4059–4090.
A. Lützen, M. Hapke, Eur. J. Org. Chem. 2002, 2292–2297.
S. Jung, Y. Kang, H. S. Kim, Y. H. Kim, C. L. Lee, J. J. Kim,
S. K. Lee, S. K. Kwon, Eur. J. Inorg. Chem. 2004, 3415–3423.
S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58, 9633–
9695.
a) S. P. Stanforth, Tetrahedron 1998, 54, 263–304 and references
cited therein; b) F. Mongin, L. Mojovic, B. Guillarnet, F.
Trécourt, G. Quéguiner, J. Org. Chem. 2002, 67, 8991–8994.
a) I. Sasaki, J. C. Daran, G. G. A. Balavoine, Synthesis 1999,
5, 815–820; b) M. Ziegler, V. Monney, H. Stoeckli-Evans, A.
Von Zelewsky, I. Sasaki, G. Dupic, J. C. Daran, G. G. A. Bala-
voine, J. Chem. Soc., Dalton Trans. 1999, 667–675.
F. Kröhnke, Synthesis 1976, 1–24.
[8]
[9]
[10]
Complex 4f: Yield: 28 mg (24%). 1H NMR (CD3COCD3): δ = 8.81
(d, J = 8.2 Hz, 1 H, H25), 8.73 (d, J = 8.1 Hz, 1 H, H28), 8.67 (d,
J = 8 Hz, 1 H, H15), 8.63 (d, J = 8 Hz, 1 H, H18), 8.28 (d, J =
8.2 Hz, 1 H, H4), 8.17 (td, J = 7.9 and 1.6 Hz, 1 H, H24), 8.11 (d,
J = 8.6 Hz, 1 H, H11), 8.12 (m, 1 H, H31), 8.06 (ddd, J = 5.3, 1.4
and 0.8 Hz, 1 H, H22), 8.03 (td, J = 7.7 and 1.4 Hz, 1 H, H14),
7.98 (td, J = 8 and 1.5 Hz, 1 H, H29), 7.96 (m, 1 H, H19), 7.94
(m, 1 H, H21), 7.92 (m, 1 H, H12), 7.74 (m, 1 H, H3), 7.72 (m, 1
H, H1), 7.69 (dd, J = 8.5 and 2.4 Hz, 1 H, H10), 7.62 (ddd, J =
7.5, 5.5 and 1.2 Hz, 1 H, H23), 7.46 (ddd, J = 7.3, 5.7 and 1.3 Hz,
1 H, H13), 7.39 (ddd, J = 7.3, 5.7 and 1.3 Hz, 2 H, H30, H20),
7.29 (d, J = 2.4 Hz, 1 H, H8), 2.13 (s, 3 H, CH3) ppm. 13C NMR
(CD3COCD3): δ = 194.80 (C7), 162.76 (C5), 157.78 (C26), 157.03
(C16), 156.75 (C17), 155.30 (C26), 154.34 (C22), 152.86 (C6),
150.60 (C1), 150.47 (C21), 150.24 (C12), 149.25 (C22), 146.99 (C9),
137.12 (C3), 136.89 (C24), 135.61 (C29), 134.73 (C14), 134.57
(C19), 134.44 (C2), 128.41 (C8), 127.33 (C23), 126.93 (C13), 126.67
(C30 or C20), 126.52 (C20 or C30), 123.83 (C28), 123.65 (C11),
123.54 (C25), 123.43 (C15), 123.39 (C18), 120.39 (C4), 115.90
(C10), 17.31 (CH3) ppm. FAB-MS: m/z = 627 [M–OTf]+.
[11]
[12]
[13]
[14]
[15]
V. Bonnet, F. Mongin, F. Trécourt, G. Quéguiner, P. Knochel,
Tetrahedron 2002, 58, 4429–4438.
[16]
The reaction of 2a with (E)-2-methyl-2-butenal (tiglic aldehyde)
was carried out under the same conditions and led to 4,5-di-
methyl-2-phenylpyridine in 84% yield.[21] 1H NMR (CDCl3): δ
= 8.39 (s, 1 H), 7.94 (dd, J = 6.8 and 1.5 Hz, 2 H), 7.48–7.36
(m, 4 H), 2.32 (s, 3 H), 2.27 (s, 3 H) ppm. 13C NMR (CDCl3):
δ = 155.1, 149.9, 146.2, 139.5, 130.7, 128.7, 128.4, 126.7, 121.4,
19.4, 16.1 ppm. C13H13N+0.05OHCNH2 (185.50): calcd. C
84.50, H 7.14, N 7.93; found C 84.38, H 6.72, N 7.48. DCI-
MS: m/z = 183 [M]+.
[17]
[18]
[19]
R. F. Francis, C. D. Crews, B. S. Scott, J. Org. Chem. 1978, 43,
3227–3239.
J. Mathieu, P. Gros, Y. Fort, Tetrahedron Lett. 2001, 42, 1879–
1881.
E. Van der Eycken, Z. Jidong, A. Kilonda, F. Compernolle, S.
Toppet, G. Hoornaert, M. Van der Auweraer, C. Jackers, W.
Verbouwe, F. C. De Schryver, J. Chem. Soc., Perkin Trans. 2
2002, 928–937.
Complex 4h: Yield: 95 mg (83%). 1H NMR (CD3COCD3): δ = 8.77
(d, J = 8.2 Hz, 1 H, H25), 8.72 (d, J = 8.2 Hz, 1 H, H28), 8.62 (d,
J = 8.1 Hz, 1 H, H18), 8.60 (d, J = 8.1 Hz, 1 H, H15), 8.20 (dd, J
= 5.8 and 1.1 Hz, 1 H, H31), 8.12 (td, J = 7.8 and 1.5 Hz, 1 H,
H24), 8.05 (dd, J = 5.4 and 1.3 Hz, 1 H, H22), 7.97 (m, 1 H, H29),
7.95 (m, 1 H, H12), 7.94 (m, 1 H, H21), 7.92 (d, J = 8.2 Hz, 1 H,
H4), 7.89 (m, 1 H, H19), 7.88 (m, 1 H, H14), 7.82 (d, J = 8.5 Hz,
1 H, H11), 7.58 (ddd, J = 7.5, 5.4 and 1.1 Hz, 1 H, H23), 7.55 (dd,
J = 8.4 and 2.1 Hz, 1 H, H3), 7.47 (m, 1 H, H1), 7.39–7.34 (m, 3
H, H13, H20, H30), 6.45 (dd, J = 8.5 and 2.6 Hz, 1 H, H10), 5.95
(d, J = 2.4 Hz, 1 H, H8), 3.53 (s, 3 H, OCH3), 2.04 (s, 3 H, CH3)
ppm. 13C NMR (CD3COCD3): δ = 194.27 (C7), 164.71 (C5),
159.59 (C6), 157.84 (C27), 157.29 (C17), 156.83 (C16), 155.36
(C26), 154.06 (C31), 150.22 (C29), 150.03 (C14), 149.41 (C1),
149.11 (C22), 138.37 (C9), 136.65 (C3), 136.41 (C24), 134.99 (C12),
133.78 (C21), 133.59 (C19), 130.77 (C2), 127.19 (C23), 126.43
(C20), 126.27 (C30), 126.12 (C13), 124.99 (C11), 123.64 (C28),
123.42 (C25), 123.13 (C15), 123.07 (C18), 119.69 (C8), 117.63 (C4),
106.43 (C10), 53.73 (OCH3), 17.10 (CH3) ppm. FAB-MS: m/z =
612 [M–OTf]+.
[20]
[21]
M. S. Lowry, W. R. Hudson, R. A. Pascal Jr, S. Bernhard, J.
Am. Chem. Soc. 2004, 126, 14129–14135.
a) R. E. Lyle, D. L. Comins, J. Org. Chem. 1976, 41, 3250–
3252; b) J. M. Bonnier, J. Court, Bull. Soc. Chim. Fr. 1970, 142–
146.
L. Labat, J. F. Lamère, I. Sasaki, P. G. Lacroix, I. Asselberghs,
J. Pérez-Monero, K. Clays, Eur. J. Inorg. Chem., DOI: 10.1002/
ejic.200600258.
C. Coudret, private communication.
E. C. Constable, M. J. Hannon, Inorg. Chim. Acta 1993, 211,
101–110.
S. Chodorowski-Kimmes, M. Beley, J. P. Collin, J. P. Sauvage,
Tetrahedron Lett. 1996, 37, 2963–2966.
C. Coudret, S. Fraysse, J. P. Launay, Chem. Commun. 1998,
663–664.
[22]
[23]
[24]
[25]
[26]
[27]
[28]
C. Hortholary, F. Minc, C. Coudret, J. Bonvoisin, J. P. Launay,
Chem. Commun. 2002, 1932–1933.
a) E. C. Constable, A. M. W. Cargill Thompson, S. Greulich, J.
Chem. Soc., Chem. Commun. 1993, 1444–1446; b) P. Reveco,
[1] a) A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser,
A. Von Zelewsky, Coord. Chem. Rev. 1988, 84, 85–277; b) J. P.
Sauvage, J. P. Collin, J. C. Chambron, S. Guillerez, C. Coudret,
Eur. J. Inorg. Chem. 2006, 3294–3302
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
3301