shown to operate marginally7 in the uptake of the ammonium
cation by the ammonium transporters (Amts) found in
bacteria and archae.8-10
Recently, cylindrical cage-type molecules with π cavities
were described, which bind NH4+ and Li+ preferably to other
alkali metal cations, via a gate-selective process, as shown
by ESI-MS measurements.11
sized by capping of the functionalized hexahomotrioxacalix-
[3]arene macrocycle with 1,3,5-trisubstituted benzene. The
alternative synthetic strategy was chosen for the present
study, that is, intramolecular cyclization of functionalized
tripod precursors.5f,12a,15
Resorcinol-based tripods 10 and 11 were synthesized in
four steps from known 3,5-bis(methoxymethyloxy)benzyl
alcohol 3.16 At first (Scheme 1), treatment of 3 with
In this letter, we present a class of conformationally rigid
macrotricycles featuring a potentially tetrahedral π cavity,
that are reminiscent of the spheriphanes12 and use the same
+
technique to probe the selective binding of NH4 over the
Scheme 1. Preparation of Benzyl Thiol 5
+
alkali metal cations and the large t-BuNH3 primary am-
monium, possibly by intramolecular cation-π interactions.
As carcerands and cavitands,13 cages 1 and 2 are derived
from resorcinol: this π electron-rich arene is incorporated
as its methylene acetal and forms a C3 symmetric macro-
cyclic substructure that is capped by 1,3,5-trisubstituted
benzene at the upper rim via benzylic thioether links. They
thiolacetic acid in Mitsunobu reaction conditions (PPh3,
DIAD, THF, 0 °C)17 afforded the benzylthiolacetate deriva-
tive 4 in 77% yield after chromatography. Subsequent
reduction of thiolacetate 4 (LiAlH4, THF, reflux) followed
by acidification (5% HCl) released the corresponding thiol
(5) quantitatively. Next (Scheme 2), 5 was deprotonated
complement the cages derived from hexahomotrioxacalix-
[3]arene, which feature CH2OCH2 benzylic ether instead of
the present OCH2O acetal bridges.14 The latter were synthe-
(5) (a) Dougherty, D. A.; Stauffer, D. A. Science 1990, 250, 1558-
1560. (b) Kearney, P. C.; Mizoue, L. S.; Kumpf, R. A.; Forman, J. E.;
McCurdy, A.; Dougherty, D. A. J. Am. Chem. Soc. 1993, 115, 9907-9919.
(c) Garel, L.; Lozach, B.; Dutasta, J.-P.; Collet, A. J. Am. Chem. Soc. 1993,
115, 11652-11653. (d) Araki, K.; Shimizu, H.; Shinkai, S. Chem. Lett.
1993, 205-208. (e) Aoki, K.; Murayama, K.; Nishiyama, H. J. Chem. Soc.,
Chem. Commun. 1995, 2221-2222. (f) Me´ric, R.; Lehn, J.-M.; Vigneron,
J.-P. Bull. Soc. Chim. Fr. 1994, 131, 579-583. (g) Roelens, S.; Torriti, R.
J. Am. Chem. Soc. 1998, 120, 12443-12452.
Scheme 2. Synthesis of the Tripod Precursors 8-11
(6) (a) Chin, J.; Walsdorff, C.; Stranix, B.; Oh, J.; Chung, H. J.; Park,
S.-M.; Kim, K. Angew. Chem., Int. Ed. 1999, 38, 2756-2759. (b) Oh, K.
S.; Lee, C.-W.; Choi, H. S.; Lee, S. J.; Kim, K. S. Org. Lett. 2000, 2, 2679-
2681. (c) Jon, S. Y.; Kim, J.; Kim, M.; Park, S.-H.; Jeon, W. S.; Heo, J.;
Kim, K. Angew. Chem., Int. Ed. 2001, 40, 2116-2119. (d) Chin, J.; Oh, J.;
Jon, S. Y.; Park, S. H.; Walsdorff, C.; Stranix, B.; Ghoussoub, A.; Lee, S.
J.; Chung, H. J.; Park, S.-M.; Kim, K. J. Am. Chem. Soc. 2002, 124, 5374-
5379.
(7) Luzhkov, V. B.; Almlo¨f, M.; Nervall, M.; A° qvist, J. Biochemistry
2006, 45, 10807-10814.
(8) von Wire´n, N.; Merrick, M. In Topics in Current Genetics; Boles,
E., Kra¨mer, R., Eds.; Springer: Heidelberg, Germany, 2004; 9, 95-120.
(9) (a) Khademi, S.; O’Connell, J., III; Remis, J.; Robles-Colmenares,
Y.; Miercke, L. J. W.; Stroud, R. M. Science 2004, 305, 1587-1594. (b)
Zheng, L.; Kostrewa, D.; Berne`che, S.; Winkler, F. K.; Li, X.-D. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 17090-17095.
(10) Andrade, S. L. A.; Dickmanns, A.; Ficner, R.; Einsle, O. Proc. Natl.
Acad. Sci. U.S.A. 2005, 102, 14994-14999.
(NaH, THF, 0 °C) and condensed at room temperature with
stoichiometric amounts of 1,3,5-tribromomethylbenzene 6
(11) Kim, J.; Kim, Y. K.; Park, N.; Hahn, J. H.; Ahn, K. H. J. Org.
Chem. 2005, 70, 7087-7092.
(12) (a) Vo¨gtle, F.; Gross, J.; Seel, C.; Nieger, M. Angew. Chem., Int.
Ed. Engl. 1992, 31, 1069-1071. (b) Cioslowski, J.; Lin, Q. J. Am. Chem.
Soc. 1995, 117, 2553-2556.
(13) (a) Moran, J. R.; Karbach, S.; Cram, D. J. J. Am. Chem. Soc. 1982,
104, 5826-5828. (b) Cram, D. J.; Karbach, S.; Kim, H.-E.; Knobler, C.
B.; Maverick, E. F.; Ericson, J. L.; Helgeson, R. C. J. Am. Chem. Soc.
1988, 110, 2229-2237. (c) Sherman, J. C.; Knobler, C. B.; Cram, D. J. J.
Am. Chem. Soc. 1991, 113, 2194-2204.
(14) Araki, K.; Hayashida, H. Tetrahedron Lett. 2000, 41, 1807-1810.
(15) (a) Tanner, M. E.; Knobler, C. B.; Cram, D. J. J. Org. Chem. 1992,
57, 40-46. (b) Lee, K. H.; Lee, D. H.; Hwang, S.; Lee, O. S.; Chung, D.
S.; Hong, J.-I. Org. Lett. 2003, 5, 1431-1433. (c) Ito, K.; Sato, T.; Ohba,
Y. J. Heterocycl. Chem. 2003, 40, 77-83.
(16) Hollinshead, S. P.; Nichols, J. B.; Wilson, J. W. J. Org. Chem. 1994,
59, 6703-6709.
(17) Mitsunobu, O. Synthesis 1981, 1-28.
2962
Org. Lett., Vol. 9, No. 16, 2007