in 1 via the hetero cycloadduct 4 derived from a cycload-
dition of chiral allenamide 5 with enone 6 (Scheme 1).
(1) TBDPS-silylation, (2) DIBAL-H reduction,16 (3) vinyl
Grignard addition, and (4) Swern oxidation (Scheme 2). The
Scheme 1. A Formal Total Synthesis of (+)-Zincophorin
Scheme 2. A Stereoselective Hetero [4 + 2] Cycloaddition
Achieving this exercise would provide the first application
of chiral allenamides in natural product synthesis and
represent an approach that differs from all other efforts.13
We report here a formal synthesis of (+)-zincophorin
featuring this cycloaddition and a urea-directed Stork-
Crabtree hydrogenation.
key [4 + 2] cycloaddition of heterodiene 9 with Close
auxiliary17 substituted allenamide 5 led to pyran 10 as a single
isomer. The relative stereochemistry at C7 (the numbering
is based on the natural product) was assigned on the basis
of our previous work with this cycloaddition.6,7a Specifically,
the heterodiene (9 here) with an s-cis conformation should
approach from the less hindered π-face of the internal olefin
of allenamide 5, which is shown in its lowest energy
conformation.6,7a It is noteworthy that this was the first time
a chiral heterodiene was used, and the high level of
diastereoselectivity is a likely result of a matched transition
state (Scheme 2).
Our efforts commenced with the synthesis of chiral enone
915 from methyl (R)-3-hydroxy-2-methylpropionic ester 7 via
(4) For Cossy’s total synthesis, see: (a) Cossy, J.; Meyer, C.; Defosseux,
M.; Blanchard, N. Pure Appl. Chem. 2005, 77, 1131. (c) Defosseux, M.;
Blanchard, N.; Meyer, C.; Cossy, J. J. Org. Chem. 2004, 69, 4626. (c)
Defosseux, M.; Blanchard, N.; Meyer, C.; Cossy, J. Org. Lett. 2003, 5,
4037.
(5) For Miyashita’s total synthesis, see: Komatsu, K.; Tanino, K.;
Miyashita, M. Angew. Chem., Int. Ed. 2004, 43, 4341.
(6) Wei, L.-L.; Hsung, R. P.; Xiong, H.; Mulder, J. A.; Nkansah, N. T.
Org. Lett. 1999, 1, 2145.
(7) Also see: (a) Berry, C. R.; Hsung, R. P. Tetrahedron 2004, 60, 7629.
(b) Wei, L.-L.; Xiong, H.; Douglas, C. J.; Hsung, R. P. Tetrahedron Lett.
1999, 40, 6903.
Our efforts then encountered a serious obstacle at what
we had believed to be the most trivial stage: sequential
hydrogenations of the two olefins at C6 and C3 (Scheme
3). In short, after much exploration to avoid hydrolysis of
the cyclic aminal via cleavage of the C7-O bond, we were
delighted to find that hydrogenation of the exo-cyclic olefin
at C6 could be achieved by using Adam’s catalyst along with
3 equiv of NaBH4, while the C3 endo-cyclic olefin could
only be reduced by using Stork-Crabtree conditions.18,19
Unsuspectingly, we proceeded to remove the silyl group in
presumably the desired tetrahydropyran 12, only to be
confronted with a product quite different as established by
the X-ray structure of 13.
(8) For reviews on allenamides, see: (a) Hsung, R. P.; Wei, L.-L.; Xiong,
H. Acc. Chem. Res. 2003, 36, 773. (b) Tracey, M. R.; Hsung, R. P.; Antoline,
J.; Kurtz, K. C. M.; Shen, L.; Slafer, B. W.; Zhang, Y. In Science of
Synthesis, Houben-Weyl Methods of Molecular Transformations; Weinreb,
S. M., Ed.; Georg Thieme Verlag KG: Stuttagart, Germany, 2005; Chapter
21.4.
(9) For a compendium on the chemistry of allenes, see: Krause, N.;
Hashmi, A. S. K., Modern Allene Chemistry; Wiley-VCH Verlag GmbH
& Co. KGaA: Weinheim, Germany, 2004; Vols. 1 and 2.
(10) For an elegant review on the synthesis of allenes, see: (a)
Brummond, K. M.; DeForrest, K. M. Synthesis 2007, 795. For an excellent
review on the synthetic applications of allenes, see: (b) Ma, S. Chem. ReV.
2005, 105, 2829.
(11) For recent reports on the allenamide chemistry, see: (a) Parthasa-
rathy, K.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2006, 8, 621. (b)
Fena´ndez, I.; Monterde, M. I.; Plumet, J. Tetrahedron Lett. 2005, 46, 6029.
(c) de los Rios, C.; Hegedus, L. S. J. Org. Chem. 2005, 70, 6541. (d)
Alouane, N.; Bernaud, F.; Marrot, J.; Vrancken, E.; Mangeney, P. Org.
Lett. 2005, 7, 5797.
(12) (a) Antoline, J. E.; Hsung, R. P.; Huang, J.; Song, Z.; Li, G. Org.
Lett. 2007, 9, 1275. (b) Huang, J.; Ianni, J. C.; Antoline, J. E.; Hsung, R.
P.; Kozlowski, M. C. Org. Lett. 2006, 8, 1565. (c) Berry, C. R.; Hsung, R.
P.; Antoline, J. E.; Petersen, M. E.; Rameshkumar, C.; Nielson, J. A. J.
Org. Chem. 2005, 70, 4038. (d) Shen, L.; Hsung, R. P.; Zhang, Y.; Antoline,
J. E.; Zhang, X. Org. Lett. 2005, 7, 3081. (e) Huang, J.; Hsung, R. P. J.
Am. Chem. Soc. 2005, 127, 50.
While the stereochemistry at C6 is as expected, both
stereocenters at C3 and C7 are opposite from what we had
expected. These expectations are based on our earlier
(14) Danishefsky’s synthesis featured a normal demand hetero [4 + 2]
cycloaddition of a diene with aldehyde. See ref 3.
(15) See the Supporting Information.
(16) For the synthesis of ent-8, see: (a) Alois, F.; Egmont, K.; Olivier,
Lepage J. Am. Chem. Soc. 2006, 128, 9194. (b) Bergmeier, S. C.; Stanchina,
D. M. J. Org. Chem. 1997, 62, 4449.
(17) Close, W. J. J. Org. Chem. 1950, 15, 1131.
(13) For some recent elegant studies on related inverse demand hetero
[4 + 2] cyclocadidition of chiral enamides, see: (a) Gohier, F.; Bouhadjera,
K.; Faye, D.; Gaulon, C.; Maisonneuve, V.; Dujardin, G.; Dhal, R. Org.
Lett. 2007, 9, 211. (b) Tardy, S.; Tatiboue¨t, A.; Rollin, P.; Dujardin, G.
Synlett 2006, 1425 and reference cited therein. Also see: (c) Palasz, A.
Org. Biomol. Chem. 2005, 3, 3207.
(18) For the first application of directed hydrogenations employing
Crabtree’s catalyst, see: (a) Stork, G.; Kahne, D. E. J. Am. Chem. Soc.
1983, 105, 1072. For some leading applications, also see: (b) Evans, D.
A.; Morrissey, M. M. J. Am. Chem. Soc. 1984, 106, 3866. (c) Ginn, J. D.;
Padwa, A. Org. Lett. 2002, 4, 1515.
(19) Crabtree, R. H.; Davis, M. W. J. Org. Chem. 1986, 51, 2655.
2200
Org. Lett., Vol. 9, No. 11, 2007