Published on Web 05/08/2007
Intramolecular Electron Transfer within the Substituted
Tetrathiafulvalene-Quinone Dyads: Facilitated by Metal Ion
and Photomodulation in the Presence of Spiropyran
Hui Wu,†,‡ Deqing Zhang,*,† Lei Su,† Kei Ohkubo,§ Chunxi Zhang,† Shiwei Yin,†
Lanqun Mao,† Zhigang Shuai,† Shunichi Fukuzumi,§ and Daoben Zhu*,†
Contribution from the Beijing National Laboratory for Molecular Sciences, Organic Solids
Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China,
Graduate School of Chinese Academy of Sciences, Beijing 100080, China, and Department of
Material and Life Science, DiVision of AdVanced Science and Biotechnology, Graduate School of
Engineering, Osaka UniVersity, SORST, Japan Science and Technology Agency (JST),
Suita, Osaka 565-0871, Japan
Received January 14, 2007; E-mail: dqzhang@iccas.ac.cn
Abstract: Intramolecular electron transfer is observed for two new substituted tetrathiafulvalene (TTF)-
quinone dyads 1 and 2 in the presence of metal ions. On the basis of the electrochemical studies of reference
compound 5 and the comparative studies with dyad 3, it was proposed that the synergic coordination of
the radical anion of quinone and the oligoethylene glycol chain with metal ions may be responsible for
stabilizing the charge-separation state and thus facilitating the electron-transfer process. Most interestingly,
the intramolecular electron-transfer processes within these two dyads can be modulated by UV-vis light
irradiation in the presence of spiropyran, by taking advantage of its unique properties.
diimide,8 naphthalene diimide,9 and porphyrin/phthalocyanine,10
etc. We have recently described redox molecular fluorescence
switches and chemical sensors based on TTF-anthracene
dyads.11
In comparison to the intramolecular photoinduced electron
transfer, the intramolecular electron transfer has seldom been
observed for D-A molecules containing TTF units. Perepichka
et al. and later Tsiperman et al. have very recently described
1. Introduction
Tetrathiafulvalene (TTF) and its derivatives as strong electron
donors have been extensively investigated as the components
of organic conductors and superconductors for the past 3
decades.1 In recent years, electron donor (D)-acceptor (A)
molecules with TTF as the electron-donating unit have received
significant attention.2-11 This is mainly because (1) these D-A
molecules show potential photovoltaic applications by taking
advantage of efficient photoinduced electron-transfer (PET)
processes between TTF and electron-accepting units (e.g., C60);
(2) these D-A molecules can be employed as models to study
charge-transfer (CT) interactions. The electron-accepting units
which have been covalently linked to TTF units include
quinone,4 C60,5 TCNQ (tetracyano-p-quinodimethane),6,7 perylene
(4) (a) Frenzel, S.; Mu¨llen, K. Synth. Met. 1996, 80, 175-182. (b) Segura, J.
L.; Mart´ın, N.; Seoane, C.; Hanack, M. Tetrahedron Lett. 1996, 37, 2503-
2506. (c) Scheib, S.; Cava, M. P.; Baldwin, J. W.; Metzger, R. M. J. Org.
Chem. 1998, 63, 1198-1204. (d) Moriarty, R. M.; Tao, A.; Gilardi, R.;
Song, Z.; Tuladhar, S. M. Chem. Commun. 1998, 157-158. (e) Gonza´lez,
M.; Illescas, B.; Mart´ın, N.; Segura, J. L.; Seoane, C.; Hanack, M.
Tetrahedron 1998, 54, 2853-2866. (f) Tsiperman, E.; Regev, T.; Becker,
J. Y.; Bernstein, J.; Ellern, A.; Khodorkovsky, V.; Shames, A.; Shapiro,
L. Chem. Commun. 1999, 1125-1126. (g) Gautier, N.; Dumur, F.; Lloveras,
V.; Vidal-Gancedo, J.; Veciana, J.; Rovira, C.; Hudhomme, P. Angew.
Chem., Int. Ed. 2003, 42, 2765-2768. (h) Dumur, F.; Gautier, N.; Gallego-
Planas, N.; Sahin, Y.; Levillain, E.; Mercier, N.; Hudhomme, P.; Masino,
M.; Girlando, A.; Lloveras, V.; Vidal-Gancedo, J.; Veciana, J.; Rovira, C.
J. Org. Chem. 2004, 69, 2164-2177.
(5) (a) Prato, M.; Maggini, M.; Giacometti, C.; Scorrano, G.; Sandona, G.;
Farnia, G. Tetrahedron 1996, 52, 5221-5234. (b) Mart´ın, N.; Sa´nchez,
L.; Seoane, C.; Andreu, R.; Gar´ın, J.; Orduna, J. Tetrahedron Lett. 1996,
37, 5979-5982. (c) Llacay, J.; Veciana, J.; Vidal-Gancedo, J.; Bourdelande,
J. L.; Gonza´lez-Moreno, R.; Rovira, C. J. Org. Chem. 1998, 63, 5201-
5210. (d) Mart´ın, N.; Sa´nchez, L.; Illescas, B.; Pe´rez, I. Chem. ReV. 1998,
98, 2527-2547. (e) Simonsen, K. B.; Konovalov, V. V.; Konovalova, T.
A.; Kawai, T.; Cava, M. P.; Kispert, L. D.; Metzger, R. M.; Becher, J. J.
Chem. Soc., Perkin Trans. 2 1999, 657-665. (f) Guldi, D. M.; Gonza´lez,
S.; Mart´ın, N. J. Org. Chem. 2000, 65, 1978-1983. (g) Mart´ın, N.; Sa´nchez,
L.; Herranz, M. A.; Guldi, D. M. J. Phys. Chem. A 2000, 104, 4648-
4657. (h) Kreher, D.; Cariou, M.; Liu, S.-G.; Levillain, E.; Veciana, J.;
Rovira, C.; Gorgues, A.; Hudhomme, P. J. Mater. Chem. 2002, 12, 2137-
2159. (i) Diaz, M. C.; Herranz, M. A.; Illescas, B. M.; Mart´ın, N.; Godbert,
N.; Bryce, M. R.; Luo, C.; Swartz, A.; Anderson, G.; Guldi, D. M. J. Org.
Chem. 2003, 68, 7711-7721. (j) Gorgues, A.; Hudhomme, P.; Salle´, M.
Chem. ReV. 2004, 104, 5151-5184. (k) Baffreau, J.; Dumur, F.; Hud-
homme, P. Org. Lett. 2006, 8, 1307-1310.
† Institute of Chemistry, Chinese Academy of Sciences.
‡ Graduate School of Chinese Academy of Sciences.
§ Osaka University.
(1) (a) Williams, J. M.; Ferraro, J. R.; Thorn, R. J.; Carlson, K. D.; Geiser, U.;
Wang, H. H.; Kini, A. M.; Whangbo, M.-H. Organic Superconductors
(Including Fullerenes); Prentice Hall: Englewood Cliffs, NJ, 1992. (b)
Coronado, E.; Day, P. Chem. ReV. 2004, 104, 5419-5448. (c) Shibaeva,
R. P.; Yagubskii, E. B. Chem. ReV. 2004, 104, 5347-5378. (d) Yamada,
J.-i.; Akutsu, H.; Nishikawa, H.; Kikuchi, K. Chem. ReV. 2004, 104, 5057-
5084.
(2) (a) Bryce, M. R. AdV. Mater. 1999, 11, 11-23. (b) Bryce, M. R. J. Mater.
Chem. 2000, 10, 589-598. (c) Segura, J. L.; Mart´ın, N. Angew. Chem.,
Int. Ed. 2001, 40, 1372-1409. (d) Bendikov, M.; Wudl, F.; Perepichka,
D. F. Chem. ReV. 2004, 104, 4891-4945.
(3) (a) Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.;
Heath, J. R. Acc. Chem. Res. 2001, 34, 433-444. (b) Jeppesen, J. O.;
Perkins, J.; Becher, J.; Stoddart, J. F. Angew. Chem., Int. Ed. 2001, 40,
1216-1221. (c) Tseng, H.; Vignon, S.; Stoddart, J. F. Angew. Chem., Int.
Ed. 2003, 42, 1491-1495. (d) Liu, Y.; Flood, A. H.; Stoddart, J. F. J. Am.
Chem. Soc. 2004, 126, 9150-9151. (e) Steuerman, D. W.; Tseng, H.; Peters,
A. J.; Flood, A. H.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.; Heath,
J. R. Angew. Chem., Int. Ed. 2004, 43, 6486-6491.
9
10.1021/ja0702824 CCC: $37.00 © 2007 American Chemical Society
J. AM. CHEM. SOC. 2007, 129, 6839-6846
6839