Intramolecular Dynamic Processes in Diaryl Atropisomers
FULL PAPER
Table 4. Composition of the liquid-crystalline NMR samples investigated.
[16] a) C. Aroulanda, D. Merlet, J.
Courtieu, P. Lesot, J. Am. Chem.
Soc. 2001, 123, 12059—12066;
b) P. Lesot, D. Merlet, M. Sarfati,
J. Courtieu, H. Zimmermann, Z.
Luz, J. Am. Chem. Soc. 2002, 124,
10071–10082.
[17] C. Aroulanda, M. Sarfati, J. Cour-
tieu, P. Lesot, Enantiomer 2001,
6, 281–287.
[18] Note that the case of chiral, sub-
stituted cyclohexanes is very pe-
culiar because the exchange rate
between enantiomers can be de-
termined without discriminating
the enantiomeric forms. Indeed
for these compounds, the inter-
NMR
sample
Solute
Polymer
DP[a]
Co-solvent Solute Polymer Co-solvent
Amount of
polymer [wt%]
[mg][b]
[mg][b]
[mg][b]
1
2
3
4
5
6
7
8
1
1
1
2
3
3
3
4
PBLG
PBLG/PBDG 782/914
782
CHCl3
CHCl3
CH2Cl2
CHCl3
CHCl3
CHCl3
CH2Cl2
CHCl3
15
12
10
12
11
10
10
11
101
51+53440
107
101
101
50+51
99
99
440
18.2
18.7
PBLG
PBLG
PBLG
782
782
782
442
440
441
439
441
442
19.1
18.3
18.3
18.4
18.0
18.0
PBLG/PBDG 782/914
PBLG
PBLG
782
782
[a] DP: average degree of polymerisation of the polypeptide used (PBLG and PBDG). [b] To an accuracy of
ꢃ1 mg.
ing the co-solvent above 350 K for CHCl3 and above 344 K for CH2Cl2.
The temperature was calibrated using standard procedures. Mixtures
were left for 10–15 min to equilibrate at the sample temperature before
recording spectra. All 1D 2H NMR spectra were recorded with 1024
scans of 2048 data points. The tuning and matching of the deuterium coil
were optimised at each temperature. The classical WALTZ-16 sequence
was used to decouple protons (<0.4 W of power).
conversion between enantiomers also leads to the interconversion of
diastereotopic directions (axial and equatorial bonds) that are none-
quivalent in achiral LCs.
[19] P. Lesot, O. Lafon, C.-A. Fan, H. B. Kagan, Chem. Commun. 2006,
389–391.
[20] C. Zannoni in Nuclear Magnetic Resonance of Liquid Crystals (Ed.:
J. W. Emsley), NATO, Dordrecht, 1985, pp. 1–31.
[21] J. W. Emsley, J. C. Lindon, NMR Spectroscopy Using Liquid Crystal
Solvents, Pergamon Press, Oxford, 1975.
[22] a) B. Halle, Prog. Nucl. Magn. Reson. Spectrosc. 1996, 32, 137–159;
b) Z. Luz in NMR of Ordered Liquids (Eds.: E. E. Burnell, C. A. de
Lange), Kluwer, Dordrecht, 2002, pp. 419–448.
Acknowledgements
[23] M. H. Levitt, Spin Dynamics, Wiley, 2005, Chichester, pp. 492–494.
[24] E. Gelerinter, Z. Luz, R. Poupko, H. Zimmermann, J. Chem. Phys.
1990, 92–93, 8845–8850.
[25] a) J. A. Pople, W. G. Schneider, H. J. Bernstein, High Resolution
NMR, McGraw-Hill, New York, 1959, pp. 218–230; b) G. Binsch,
Top. Stereochem. 1968, 3, 97–192.
The authors are grateful to Prof. Dr. V. Schurig and Dr. O. Trapp for cal-
culating the free energy of activation from the HPLC study. Also they
cordially thank Dr. R. Paugam for stimulating discussions. O.L. and C.-
A.F. acknowledge MNESER for a Ph.D. grant and the CNRS of Gif-sur-
Yvette for their financial support, respectively.
[26] H. Eyring, Chem. Rev. 1935, 35, 65–77.
[27] This approach is called the “coalescence temperature method”.
[28] M. J. S. Dewar, K. M. Dieter, J. Am. Chem. Soc. 1986, 108, 8075–
8086.
[29] HyperchemTM, Professional 6.1, Hypercube, Inc, 1115 NN 4th
street, Gainsville, Florida, 32601 (USA).
[1] P. Llyod-Williams, E. Giralt, Chem. Soc. Rev. 2001, 30, 145–157, and
references therein.
[2] M. Oki, Top. Stereochem. 1983, 14, 1–82, and references therein.
[3] A. L. Eliel, A. H. Wilen, Stereochemistry of Organic Compounds,
Wiley, New York, 1994.
[30] a) R. F. Stewart, J. Chem. Phys. 1970, 52, 431–438; b) L. J. Sham, W.
Kohn, Phys. Rev. 1965, 140, 1697–1705.
[4] H. S. Gutowsky, D. W. McCall, C. P. Slichter, J. Chem. Phys. 1953,
21, 279–292.
[31] a) K. L. Servis, R. L. Domenick, J. Am. Chem. Soc. 1986, 108, 2211–
2214; b) S. Berger, H. Kꢂnzer, Tetrahedron 1983, 39, 1327–1329;
c) G. S. Pawley, E. A. Yeats, Acta Crystallogr. Sect. B 1969, 25,
2009–2013.
[32] A. Meddour, I. Canet, A. Loewenstein, J.-M. PØchinØ, J. Courtieu, J.
Am. Chem. Soc. 1994, 116, 9652–9656.
[5] a) A. D. Bain, Prog. Nucl. Magn. Reson. Spectrosc. 2003, 39, 63 –
103, and references therein; b) S. Grilli, L. Lunazzi, A. Mazzanti, M.
Pinamonti, Tetrahedron 2004, 60, 4451–4458; c) D. Casarini, C. Co-
luccini, L. Lunazzi, A. Mazzanti, J. Org. Chem. 2005, 70, 5098–5102.
[6] a) C. S. Johnson, J. Magn. Reson., Ser. A 1993, 102, 214–218; b) E. J.
Cabrita, S. Berger, P. Bräuer, J. Kärger, J. Magn. Reson. 2002, 157,
124–131; c) P. Thureau, B. Ancian, S. Viel, A. ThØvand, Chem.
Commun. 2006, 200–202.
[33] P. Lesot, O. Lafon, J. Courtieu, P. BerdaguØ, Chem. Eur. J. 2004, 10,
3741–3746.
[34] L. S. Bartell, J. Am. Chem. Soc. 1961, 83, 3567–3571.
[35] C. Canlet, D. Merlet, P. Lesot, A. Meddour, A. Loewenstein, J.
Courtieu, Tetrahedron: Asymmetry 2000, 11, 1911–1918.
[36] a) P. Lesot, D. Merlet, A. Meddour, A. Loewenstein, J. Courtieu, J.
Chem. Soc., Faraday Trans. 1995, 91, 1371–1375; b) A. Meddour, P.
BerdaguØ, A. Hedli, J. Courtieu, P. Lesot, J. Am. Chem. Soc. 1997,
119, 4502–4508.
[37] a) I. Haller, Prog. Solid State Chem. 1975, 10, 103–118; b) H.
Kneppe, V. Reiffenrath, Chem. Phys. Lett. 1982, 87, 59–62; c) M. L.
Magnuson, B. M. Fung, J.-P. Bayle, Liquid crystals 1995, 19, 823–
832.
[7] R. Poupko, Z. Luz in Encyclopedia of Nuclear Magnetic Resonance
(Eds.: G. M. Grant, R. K. Harris), Wiley, Chichester, 1996, pp. 1783–
1797, and references therein.
[8] Z. Luz in Nuclear Magnetic Resonance of Liquid Crystals (Ed.: J. W.
Emsley), NATO, Dordrecht, 1985, pp. 315–340.
[9] R. Poupko, Z. Luz, J. Chem. Phys. 1981, 75, 1675–1681.
[10] C. Boeffel, Z. Luz, R. Poupko, H. Zimmermann, J. Am. Chem. Soc.
1990, 112, 7158–7163.
[11] a) S. Ternieden, D. Muller, K. Muller, Liquid Crystals 1999, 26, 759–
769; b) S. Ternieden, D. Zauser, K. Muller, Liquid Crystals 2000, 27,
1171–1182.
[38] J. Israelachvili, Intermolecular and Surface Forces, Academic Press,
San Diego, 1991.
[12] M. E. Moseley, R. Poupko, Z. Luz, J. Magn. Reson. 1982, 48, 354–
360.
[39] a) J. Jeener, B. H. Meier, P. Bachmann, R. R. Ernst, J. Chem. Phys.
1979, 71, 4546–4553; b) C. Boeffel, Z. Luz, R. Poupko, A. J. Vega,
Isr. J. Chem. 1989, 29, 283–296.
[40] In practice, we plot the two right sides of Equations (4) and (6)
versus Tc and then determine the intersection point of the two plots.
[13] I. Canet, J. Courtieu, A. Loewenstein, A. Meddour, J.-M. PØchinØ, J.
Am. Chem. Soc. 1995, 117, 6520–6526.
[14] M. Sarfati, P. Lesot, D. Merlet, J. Courtieu, Chem. Commun. 2000,
2069–2081.
[15] P. Lesot, M. Sarfati, J. Courtieu, Chem. Eur. J. 2003, 9, 1724–1745.
Chem. Eur. J. 2007, 13, 3772 – 3786
ꢁ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3785