10.1002/anie.202012445
Angewandte Chemie International Edition
COMMUNICATION
[2]
a) Q. Dang, B. S. Brown, P. D. van Poelje, T. J. Colby, M. D. Erion, Bioorg.
Med. Chem. Lett. 1999, 9, 1505; b) R. G. Matheny, US20130122108,
2013; c) D. Camp, A. Garavelas, M. Campitelli, J. Nat. Prod. 2015, 78,
1370.
simultaneous movement of four atoms (O-C-Cl-H). Figure 3b
shows the most significant structural differences accounting for
the relative stability of TSR. In this transition state two different
protons of the catalyst form two CH-π interactions with the phenyl
rings of 1a and DPACl, thus maintaining the three-molecule
framework essential for the reaction to proceed. Two CH-π
interactions of the phenyl rings of 1a and DPACl are also possible
in the structure of TSS. However, to form the 4-membered
transition state, a significantly different conformation must be
stabilized. In this case, the CH-π interactions in TSS are notably
longer (especially that with the phenyl ring of 1a), resulting in the
greater stability of TSR.
[3]
[4]
Y. Liu, Q. Chen, C. Mou, L. Pan, X. Duan, X. Chen, H. Chen, Y. Zhao, Y.
Lu, Z. Jin, Y. R. Chi, Nat. Commun. 2019, 10, 1675.
Examples for kinetic resolution of alcohols: a) J. C. Ruble, H. A. Latham,
G. C. Fu, J. Am. Chem. Soc. 1997, 119, 1492; b) G. T. Copeland, S. J.
Miller, J. Am. Chem. Soc. 2001, 123, 6496; c) E. Vedejs, M. Jure, Angew.
Chem. Int. Ed. 2005, 44, 3974; Angew. Chem. 2005, 117, 4040; d) X. Li,
P. Liu, K. N. Houk, V. B. Birman, J. Am. Chem. Soc. 2008, 130, 13836;
e) B. Hu, M. Meng, Z. Wang, W. Du, J. S. Fossey, X. Hu, W.-P. Deng, J.
Am. Chem. Soc. 2010, 132, 17041; f) B. Hu, M. Meng, J. S. Fossey, W.
Mo, X. Hu, W.-P. Deng, Chem. Commun. 2011, 47, 10632; g) E. Larionov,
M. Mahesh, A. C. Spivey, Y. Wei, H. Zipse, J. Am. Chem. Soc. 2012, 134,
9390; h) G. Ma, J. Deng, M. P. Sibi, Angew. Chem. Int. Ed. 2014, 53,
11818; Angew. Chem. 2014, 126, 12012; i) T. Yamanaka, A. Kondoh, M.
Terada, J. Am. Chem. Soc. 2015, 137, 1048; j) N. Mittal, K. M. Lippert,
C. K. De, E. G. Klauber, T. J. Emge, P. R. Schreiner, D. Seidel, J. Am.
Chem. Soc. 2015, 137, 5748; k) M. D. Greenhalgh, S. M. Smith, D. M.
Walden, J. E. Taylor, Z. Brice, E. R. T. Robinson, C. Fallan, D. B. Cordes,
A. M. Z. Slawin, H. C. Richardson, M. A. Grove, P. H.-Y. Cheong, A. D.
Smith, Angew. Chem. Int. Ed. 2018, 57, 3200; Angew. Chem. 2018, 130,
3254; l) X. Dong, Y. Kita, M. Oestreich, Angew. Chem. Int. Ed. 2018, 57,
10728; Angew. Chem. 2018, 130, 10888.
[5]
[6]
J.-L. Cao, J. Qu, J. Org. Chem. 2010, 75, 3663.
a) S. Y. Lee, J. M. Murphy, A. Ukai, G. C. Fu, J. Am. Chem. Soc. 2012,
134, 15149; b) A. E. Díaz-Álvarez, L. Mesas-Sánchez, P. Dinér, Angew.
Chem. Int. Ed. 2013, 52, 502-504; Angew. Chem. 2013, 125, 522; c) S.
Agrawal, E. Martínez-Castro, R. Marcos, B. Martín-Matute, Org. Lett.
2014, 16, 2256.
Figure 3. Optimized Structures of TSR (up; 7.8 kcal/mol) and TSS (bottom; 9.3
kcal/mol). a) Interatomic distances (Å), light blue dashed lines and displacement
vectors (blue arrows) in the corresponding transition states. b) Complete
optimized structures of the transition states with the CH-π interactions shown
as green dashed lines and the distances (Å) between a proton and the center
of the corresponding phenyl ring as green numbers. Carbon: grey, hydrogen:
white, oxygen: red, nitrogen: blue, chlorine: green.
[7]
a) A. Ortiz, T. Benkovics, G. L. Beutner, Z. Shi, M. Bultman, J. Nye, C.
Sfouggatakis, D. R. Kronenthal, Angew. Chem. Int. Ed. 2015, 54, 7185;
Angew. Chem. 2015, 127, 7291; b) D. W. Piotrowski, A. S. Kamlet, A.-M.
R. Dechert-Schmitt, J. Yan, T. A. Brandt, J. Xiao, L. Wei, M. T. Barrila, J.
Am. Chem. Soc. 2016, 138, 4818; c) A. Kinens, M. Sejejs, A. S. Kamlet,
D. W. Piotrowski, E. Vedejs, E. Suna, J. Org. Chem. 2017, 82, 869; d)
M.-S. Xie, Y.-G. Chen, X.-X. Wu, G.-R. Qu, H.-M. Guo, Org. Lett. 2018,
20, 1212.
[8]
[9]
Low enantioselectivities were obtained by using chiral DMAP and
cinchonine organocatalysts: a) S. Yamada, K. Yamashita, Tetrahedron
Lett. 2008, 49, 32; b) D. Niedek, S. M. M. Schuler, C. Eschman, R. C.
Wende, A. Seitz, F. Keul, P. R. Schreiner, Synthesis 2017, 49, 371.
a) Z. Zhang, F. Xie, J. Jia, W. Zhang, J. Am. Chem. Soc. 2010, 132,
15939; b) S. Liu, Z. Zhang, F. Xie, N. A. Butt, L. Sun, W. Zhang,
Tetrahedron: Asymmetry 2012, 23, 329; c) Z. Zhang, M. Wang, F. Xie,
H. Sun, W. Zhang, Adv. Synth. Catal. 2014, 356, 3164; d) M. Wang, Z.
Zhang, S. Liu, F. Xie, W. Zhang, Chem. Commun. 2014, 50, 1227; e) M.
Wang, Z. Zhang, F. Xie, W. Zhang, Chem. Commun. 2014, 50, 3163; f)
M. Wang, X. Zhang, Z. Ling, Z. Zhang, W. Zhang, Chem. Commun. 2017,
53, 1381; g) L. Zhang, M. Wang, M. Zhou, Z. Zhang, M. Muraoka, W.
Zhang, Asian J. Org. Chem. 2019, 8, 1024; h) M. Zhou, E. He, L. Zhang,
J. Chen, Z. Zhang, Y. Liu, W. Zhang, Org. Chem. Front. 2019, 6, 3969; i)
M. Wang, M. Zhou, L. Zhang, Z. Zhang, W. Zhang, Chem. Sci. 2020, 11,
4801; j) M. Wang, L. Zhang, X. Huo, Z. Zhang, Q. Yuan, P. Li, J. Chen,
Y. Zou, Z. Wu, W. Zhang, Angew. Chem. Int. Ed. 2020, doi:
In conclusion, the acylative dynamic kinetic resolution of 3-
hydroxyphthalides has been efficiently implemented and
successfully applied in the synthesis of several chiral phthalidyl
ester prodrugs. Utilizing a chiral bicyclic imidazole organocatalyst
Cy-DPI and adopting a continuous injection process, a wide range
of phthalidyl esters were synthesized with high yields and
excellent enantioselectivities (up to 99% ee). Computational
studies suggest a general base catalytic mechanism and a CH-π
interaction-dominated stereocontrol mode.
Acknowledgements
This work was partially supported by National Natural Science
Foundation of China (Nos. 91856106, 21620102003 and
21991112) and National Key R&D Program of China (No.
2018YFE0126800). We thank the Instrumental Analysis Center of
Shanghai Jiao Tong University.
10.1002/anie.202011527;
Angew.
Chem.
2020,
doi:
10.1002/ange.202011527. Also utilized by other groups for the synthesis
of phosphonate prodrugs: k) D. A. DiRocco, Y. Ji, E. C. Sherer, A.
Klapars, M. Reibarkh, J. Dropinski, R. Mathew, P. Maligres, A. M. Hyde,
J. Limanto, A. Brunskill, R. T. Ruck, L.-C. Campeau, I. W. Davies,
Science 2017, 356, 426; l) D. A. Glazier, J. M. Schroeder, S. A. Blaszczyk,
W. Tang, Adv. Synth. Catal. 2019, 361, 3729.
Keywords: organocatalyst • bicyclic imidazole • dynamic kinetic
resolution • enantioselective acylation • phthalidyl ester prodrugs
[10] Q. Deng, F. Mu, Y. Qiao, D. Wei, Org. Biomol. Chem. 2020, 18, 6781.
[1]
V. Abet, F. Filace, J. Recio, J. Alvarez-Builla, C. Burgos, Eur. J. Med.
Chem. 2017, 127, 810.
5
This article is protected by copyright. All rights reserved.