LETTER
Ir-Catalyzed Allylic Substitution
793
however, gave rise to only 70% ee.23 The cyclization of 7b
gave the cyclobutane 8b with enantiomeric excess of
>98% (entries 8–10); cooling was not required here.24
(9) Tsuji, J.; Shimizu, I.; Minami, I.; Ohashi, Y. Tetrahedron
Lett. 1982, 23, 4809.
(10) Ishibashi, F.; Taniguchi, E. Bull. Chem. Soc. Jpn. 1988, 61,
4361.
(11) (a) Stork, G.; Niu, D.; Fujimoto, A.; Koft, E. R.; Balkovec,
J. M.; Tata, J. R.; Dake, G. R. J. Am. Chem. Soc. 2001, 123,
3239. (b) Raheem, I. T.; Goodman, S. N.; Jacobsen, E. N.
J. Am. Chem. Soc. 2004, 126, 706.
CO2Me
OCO2Me
MeO2C
( )
CO2Me
[Ir(COD)Cl]2,
L*, TBD
( )
n
MeO2C
n
THF
(12) General Procedure for the Ir-Catalyzed Allylic
Alkylation under Salt-Free Conditions
7a n = 1
7b n = 2
8a n = 1
8b n = 2
Under argon, a solution of [Ir(COD)Cl]2 (13.4 mg, 0.02
mmol) and L* (0.04 mmol) in anhyd THF (1.0 mL, content
of H2O <30 mg/L, Karl-Fischer titration) was treated with
anhyd 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, 11.1 mg,
0.08 mmol) and stirred for 5 min (L2) or 2 h (L1, L3).
Then, carbonate 1 (1.0 mmol), anhyd THF (4 mL) and the
pronucleophile (1.4 mmol) were added, and the solution was
stirred for the time and at the temperature stated in Table 1.
Conversion was monitored by TLC or GC. The solvent was
removed under reduced pressure and the residue was
analyzed with respect to the ratio of branched and linear
product by 1H NMR. Pure reaction products were obtained
by flash column chromatography.
Scheme 6 Ir-catalyzed cyclization
In conclusion, simplified procedures for asymmetric allyl-
ic alkylations are described that often allow substitution
products to be obtained with ≥99% ee. The new proce-
dures have been used to prepare chiral building blocks,
such as the Taniguchi lactone and the vinylcyclopropane
8a, that are of interest for syntheses of biologically active
compounds.
(13) Analytical Data for (+)-(R)-Dimethyl {1-[(Trityl-
oxy)methyl]prop-2-en-1-yl}malonate (2c)
Acknowledgment
Oil; [a]D20 +38.9 (c 0.99, CHCl3; 99.5% ee (R)]. 1H NMR
(300 MHz, CDCl3): d = 3.05–3.25 (m, 3 H, OCH2CH,
OCH2), 3.61, 3.67 (2 s, 6 H, OCH3), 3.84 [d, J = 8.4 Hz, 1 H,
CH(CO2CH3)2], 5.14 (d, J = 8.4, 1 H, CH=CHEHZ), 5.16 (d,
J = 17.3 Hz, 1 H, CH=CHEHZ), 5.94 (ddd, J = 17.1, 10.3, 8.8
Hz, 1 H, CH=CH2), 7.25–7.34 (m, 9 H, Ph), 7.41–7.44 (m, 6
H, Ph). 13C NMR (75 MHz, CDCl3): d = 44.46 (d,
OCH2CH), 52.22, 52.34 (2 s, OCH3), 53.29 [d,
This work was supported by the Deutsche Forschungsgemeinschaft
(SFB 623), the Fonds der Chemischen Industrie and the Studien-
stiftung des Deutschen Volkes. We thank Johannes Schröder for
motivated and competent experimental assistance and Prof. Klaus
Ditrich (BASF AG) for enantiomerically pure 1-arylethylamines.
References and Notes
CH(CO2CH3)2], 64.25 (t, OCH2), 86.68 (s, CPh3), 118.01 (t,
CH=CH2), 126.97, 127.73, 128.68 (3 d, Ph), 135.67 (d,
CH=CH2), 143.78 (s, Ph), 168.53, 168.62 (2 s, CO2CH3).
Anal. Calcd for C28H28O5: C, 75.65; H, 6.35. Found: C,
75.52; H, 6.56. HRMS–FAB: m/z calcd for C28H27O5
[M – H]+: 443.1858; found: 443.1838.
(1) (a) Helmchen, G.; Dahnz, A.; Dübon, P.; Schelwies, M.;
Weihofen, R. Chem. Commun. 2007, 675. (b) Takeuchi, R.;
Kezuka, S. Synthesis 2006, 3349.
(2) (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346.
(b) Tissot-Croset, K.; Polet, D.; Gille, S.; Hawner, C.;
Alexakis, A. Synthesis 2004, 2586.
(14) Synthesis of (+)-(S)-Methyl 3-[(Trityloxy)methyl]pent-4-
enoate (2c¢)
(3) (a) Bartels, B.; Helmchen, G. Chem. Commun. 1999, 741.
(b) Bartels, B.; Garcia-Yebra, C.; Rominger, F.; Helmchen,
G. Eur. J. Inorg. Chem. 2002, 2569. (c) Lipowsky, G.;
Miller, N.; Helmchen, G. Angew. Chem. Int. Ed. 2004, 43,
4595; Angew. Chem. 2004, 116, 4695. (d) Streiff, S.;
Welter, C.; Schelwies, M.; Lipowsky, G.; Miller, N.;
Helmchen, G. Chem. Commun. 2005, 2957. (e) Polet, D.;
Alexakis, A.; Tissot-Croset, K.; Corminboeuf, C.; Ditrich,
K. Chem. Eur. J. 2006, 12, 3596; and references cited
therein.
(4) (a) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 122,
15164. (b) Welter, C.; Koch, O.; Lipowsky, G.; Helmchen,
G. Chem. Commun. 2004, 896. (c) Leitner, A.; Shu, C.;
Hartwig, J. F. Org. Lett. 2005, 7, 1093; and references cited
therein. (d) Polet, D.; Alexakis, A. Org. Lett. 2005, 7, 1621;
and references cited therein. (e) Weihofen, R.; Dahnz, A.;
Tverskoy, O.; Helmchen, G. Chem. Commun. 2005, 3541.
(5) (a) López, F.; Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc.
2003, 125, 3426. (b) Shu, C.; Hartwig, J. F. Angew. Chem.
Int. Ed. 2004, 43, 4794; Angew. Chem. 2004, 116, 4898.
(6) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am.
Chem. Soc. 2003, 125, 14272.
A suspension of (+)-(R)-2c (2.23 g, 5.01 mmol), NaCl (0.44
g, 7.52 mmol) and H2O (0.56 mL, 31.06 mmol) in DMSO
(8.2 mL) was stirred for 22 h at 160 °C. Then, the reaction
mixture was cooled to r.t., diluted with H2O (45 mL), and the
aqueous layer was extracted with Et2O (3 ꢀ 90 mL). The
organic layers were combined, washed with brine (45 mL),
dried over Na2SO4 and concentrated under reduced pressure.
The crude product was purified by flash column chromatog-
raphy.
HPLC Data for 2c¢
Daicel Chiralcel AD-H, 250 ꢀ 4.6 mm, 5 mm, with guard
cartridge 10 ꢀ 4 mm, 5 mm, n-hexane–i-PrOH 98:2,
flow = 0.5 mL min–1, r.t., 210 nm: tR[(+)-(S)-2c¢] = 13 min,
tR[(–)-(R)-2c¢] = 18 min.
Analytical Data for (+)-(S)-(2c¢)
Oil; [a]D20 +12.9 [c 1.00, CHCl3; >99% ee (S)]. 1H NMR
(300 MHz, CDCl3): d = 2.37 (dd, J = 15.0, 8.2 Hz, 1 H,
CHaHbCO2CH3), 2.67 (dd, J = 15.3, 5.9 Hz, 1 H,
CHaHbCO2CH3), 2.82–2.96 (m, 1 H, CHCH2O), 3.03 (dd,
J = 8.7, 6.9 Hz, 1 H, CHaHbO), 3.16 (dd, J = 8.8, 5.3 Hz, 1
H, CHaHbO), 3.63 (s, 3 H, OCH3), 5.06 (ddd, J = 10.3, 1.4,
0.9 Hz, 1 H, CH=CHEHZ), 5.09 (ddd, J = 17.2, 1.4, 1.3 Hz, 1
H, CH=CHEHZ), 5.78 (ddd, J = 17.4, 10.1, 7.4 Hz, 1 H,
CH=CH2), 7.20–7.37 (m, 9 H, Ph), 7.39–7.50 (m, 6 H, Ph).
13C NMR (75 MHz, CDCl3): d = 36.58 (t, CH2CO2CH3),
40.68 (d, CHCH2O), 51.42 (q, OCH3), 65.91 (t, CH2O),
86.49 (s, CPh3), 116.05 (t, CH=CH2), 126.93, 127.72, 128.70
(7) (a) Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L.
Acc. Chem. Res. 2003, 36, 659. (b) Trost, B. M.; Jiang, C.
Org. Lett. 2003, 5, 1563; and references cited therein.
(8) (a) Weihofen, R.; Tverskoy, O.; Helmchen, G. Angew.
Chem. Int. Ed. 2006, 45, 5546; Angew. Chem. 2006, 118,
5673. (b) Dahnz, A.; Helmchen, G. Synlett 2006, 697.
Synlett 2007, No. 5, 790–794 © Thieme Stuttgart · New York