Multifunctional Ligands for Alzheimer’s Therapy
A R T I C L E S
role; they would be capable of disrupting low affinity but
pathologically relevant metal-peptide interactions.
hydroxypyridinone glycoconjugate32 highlights the potential of
facilitated carbohydrate transport across the BBB.
Tetrahydrosalen compounds were investigated as chelators
in this work as the tetradentate N2O2 donor set is known to have
a strong affinity for metal ions,38,39 stronger than for the
hydroxypyridinone class of chelators.32,40 In addition, the
phenolic moieties of H2GL1,2 have the potential to act as
antioxidants.41-43 Antioxidant molecules such as vitamin E and
nonsteriodal anti-inflammatory drugs (NSAIDs) have been found
to slow neurological decline in AD trials.44 The development
of multifunctional metal-ion chelating antioxidant molecules
with attached carbohydrate moieties offers an attractive strategy
for Alzheimer’s treatment.
There is considerable promise in enhancing the targeting and
efficacy of metal chelators through ligand design.25 Reports of
chelators with additional antioxidant properties,26 Aâ peptide
intercalation ability,27 and amyloid binding properties28 are
interesting developments in the field of AD therapeutics. The
design of a pro-chelator, triggered by H2O2, was recently shown
to inhibit Fe-promoted OH• radical formation, a significant
advance in the design of selective metal passivating agents.29
In this work we report the synthesis and preliminary evaluation
of two carbohydrate-containing metal-ion chelators H2GL1,2
(Chart 1).
Linking of carbohydrates to drug molecules, forming new
derivatives and/or pro-drugs, offers the potential to increase
water solubility, minimize toxicity, and improve targeting. The
brain requires a significant amount of glucose to maintain normal
bodily functions (up to 30% of total body glucose consump-
tion30), and this demand is met by the high density of hexose
transporters (GLUTs)31 at the blood brain barrier (BBB). The
GLUTs, including GLUT1, at the BBB also offer the potential
for transporter-facilitated drug delivery31 for increased brain
access to drug molecules. The substrate specificity of GLUT-1
may limit the brain uptake of H2GL1,2 by this approach;
however, less selective glucose transporters, including GLUT-3
and GLUT-4, have been identified on BBB endothelial cells.
A recent report of a series of hydroxypyridinone glycoconjugate
(Chart 1) pro-ligands that, once enzymatically deprotected, act
as selective, tissue-dependent metal binders, as well as ROS
scavengers, is an intriguing development in AD therapy.32 This
glycoconjugate approach has been used in an effort to enhance
the central nervous system (CNS) targeting of anticonvulsants,33
analgesics,34 dopamine derivatives,35 anti-cancer agents,36 and
HIV therapies.37 Positive brain uptake by a radiolabeled
Experimental Section
General Methods. All solvents and chemicals (Fisher, Aldrich) were
reagent grade and used without further purification unless otherwise
specified. Water was deionized, purified (Barnstead D9802 and D9804
cartridges), and distilled with a Corning MP-1 Mega-Pure Still. DCl
and NaOD were purchased from Cambridge Isotope Laboratories.
Atomic absorption standards Cu(NO3)2 and ZnCl2 were purchased from
Aldrich and used directly in the potentiometry experiments. The Aâ1-40
peptide was purchased from Advanced ChemTech (Louisville, KY).
1H and 13C{1H} NMR spectra were recorded on a Bruker AV-300 or
AV-400 instrument at 300.13 (75.48 for 13C NMR) or 400.13 (100.62
for 13C NMR) MHz, respectively. Mass spectra (positive ion) were
obtained on a Kratos Concept II H32Q instrument (Cs+, LSIMS), a
Macromass LCT (electrospray ionization) instrument, or a Bruker Biflex
IV (MALDI) instrument. C, H, and N analyses were performed at UBC
by M. Lakha (Carlo Erba analytical instrumentation). Room-temperature
(293 K) magnetic susceptibilities were measured on a Johnson Matthey
balance using Hg[Co(NCS)4] as the susceptibility standard; diamagnetic
corrections were estimated using Pascal’s constants.45 Frozen solution
X-band EPR spectra were recorded on a Bruker ECS-106 EPR
spectrometer in 4-mm diameter quartz tubes. The temperature (∼130
K) was maintained by liquid nitrogen flowing through a cryostat in
conjunction with a Eurotherm B-VT-2000 variable-temperature control-
ler. The microwave frequency and magnetic field were calibrated with
an EIP 625A microwave frequency counter and a Varian E500
gaussmeter, respectively. Computer simulations of the EPR spectra were
performed using the XSophe-Sophe-XeprView simulation software
suite.46 UV-vis spectra were recorded using a Hewlett-Packard 8543
diode array spectrometer.
(25) Storr, T.; Thompson, K. H.; Orvig, C. Chem. Soc. ReV. 2006, 35, 534.
(26) (a) Bebbington, D.; Monck, N. J. T.; Gaur, S.; Palmer, A. M.; Benwell,
K.; Harvey, V.; Malcolm, C. S.; Porter, R. H. P. J. Med. Chem. 2000, 43,
2779. (b) Ji, H. F.; Zhang, H. Y. Bioorg. Med. Chem. Lett. 2005, 15, 1257.
(27) Cherny, R. A.; Barnham, K. J.; Lynch, T.; Volitakis, I.; Li, Q. X.; McLean,
C. A.; Multhaup, G.; Beyreuher, K.; Tanzi, R. E.; Masters, C. L.; Bush, A.
I. J. Struct. Biol. 2000, 130, 209.
(28) Dedeoglu, A.; Cormier, K.; Payton, S.; Tseitlin, K. A.; Kremsky, J. N.;
Lai, L.; Li, X. H.; Moir, R. D.; Tanzi, R. E.; Bush, A. I.; Kowall, N. W.;
Rogers, J. T.; Huang, X. D. Exp. Gerontol. 2004, 39, 1641.
(29) Charkoudian, L. K.; Pham, D. M.; Franz, K. J. J. Am. Chem. Soc. 2006,
128, 12424.
(30) La Manna, J. C.; Harik, S. I. Brain Res. 1985, 326, 299.
(31) Qutub, A. A.; Hunt, C. A. Brain Res. ReV. 2005, 49, 595.
(32) Schugar, H.; Green, D. E.; Bowen, M. L.; Scott, L. E.; Storr, T.; Bohmerle,
K.; Thomas, F.; Allen, D. D.; Lockman, P. R.; Merkel, M.; Thompson, K.
H.; Orvig, C. Angew. Chem., Int. Ed. 2007, 46, 1716-1718; Angew. Chem.
2007, 119, 1746-1748.
(33) Battaglia, G.; La Russa, M.; Bruno, V.; Arenare, L.; Ippolito, R.; Copani,
A.; Bonina, F.; Nicoletti, F. Brain Res. 2000, 860, 149.
(34) Bilsky, E. J.; Egleton, R. D.; Mitchell, S. A.; Palian, M. M.; Davis, P.;
Huber, J. D.; Jones, H.; Yamamura, H. I.; Janders, J.; Davis, T. P.; Porreca,
F.; Hruby, V. J.; Polt, R. J. Med. Chem. 2000, 43, 2586.
(35) (a) Fernandez, C.; Nieto, O.; Rivas, E.; Montenegro, G.; Fontenla, J. A.;
Fernandez-Mayoralas, A. Carbohydr. Res. 2000, 327, 353. (b) Bonina, F.;
Puglia, C.; Rimoli, M. G.; Melisi, D.; Boatto, G.; Nieddu, M.; Calignano,
A.; La Rana, G.; De Caprariis, P. J. Drug Targeting 2003, 11, 25.
(36) (a) Halmos, T.; Santarromana, M.; Antonakis, K.; Scherman, D. Eur. J.
Pharm. 1996, 318, 477. (b) Dunsaed, C. B.; Dornish, J. M.; Aastveit, T.
E.; Nesland, J. M.; Pettersen, E. O. Anti-Cancer Drugs 1995, 6, 456. (c)
Zhang, M.; Zhang, Z. H.; Blessington, D.; Li, H.; Busch, T. M.; Madrak,
V.; Miles, J.; Chance, B.; Glickson, J. D.; Zheng, G. Bioconjugate Chem.
2003, 14, 709. (d) Luciani, A.; Olivier, J. C.; Clement, O.; Siauve, N.;
Brillet, P. Y.; Bessoud, B.; Gazeau, F.; Uchegbu, I. F.; Kahn, E.; Frija, G.;
Cuenod, C. A. Radiology 2004, 231, 135.
(38) (a) Baran, P.; Bottcher, A.; Elias, H. Z. Naturforsch. 1992, 47b, 1681. (b)
Garcia-Zarracino, R.; Ramos-Quinones, J.; Hopfl, H. J. Organomet. Chem.
2002, 664, 188. (c) Bottcher, A.; Elias, H.; Eisenmann, B.; Hilms, E.; Huber,
A.; Kniep, R.; Rohr, C.; Zehnder, M.; Neuburger, M.; Springborg, J. Z.
Naturforsch. B 1994, 49, 1089. (d) Bottcher, A.; Elias, H.; Glerup, J.;
Neuburger, M.; Olsen, C. E.; Paulus, H.; Springborg, J.; Zehnder, M. Acta
Chem. Scand. 1994, 48, 967. (e) Hinshaw, C. J.; Peng, G.; Singh, R.;
Spence, J. T.; Enemark, J. H.; Bruck, M.; Kristofzski, J.; Merbs, S. L.;
Ortega, R. B.; Wexler, P. A. Inorg. Chem. 1989, 28, 4483. (f) Hormnirun,
P.; Marshall, E. L.; Gibson, V. C.; White, A. J. P.; Williams, D. J. J. Am.
Chem. Soc. 2004, 126, 2688. (g) Klement, R.; Stock, F.; Elias, H.; Paulus,
H.; Pelikan, P.; Valko, M.; Mazur, M. Polyhedron 1999, 18, 3617. (h)
Correia, I.; Dornyei, A.; Jakusch, T.; Avecilla, F.; Kiss, T.; Pessoa, J. C.
Eur. J. Inorg. Chem. 2006, 2819.
(39) Gruenwedel, W. Inorg. Chem. 1968, 7, 495.
(40) Martell, A. E.; Smith, R. M. Critical Stability Constants; Plenum: New
York, 1974-1989; Vols. 1-6.
(41) Burton, G. W.; Ingold, K. U. J. Am. Chem. Soc. 1981, 103, 6472.
(42) Ponticelli, F.; Trendafilova, A.; Valoti, M.; Saponara, S.; Sgaragli, G. P.
Carbohydr. Res. 2001, 330, 459.
(43) Valoti, M.; Sipe, H. J.; Sgaragli, G.; Mason, R. P. Arch. Biochem. Biophys.
1989, 269, 423.
(44) (a) Sano, M.; Ernesto, C.; Thomas, R. G.; Klauber, M. R.; Schafer, K.;
Grundman, M.; Woodbury, P.; Growdon, J.; Cotman, D. W.; Pfeiffer, E.;
Schneider, L. S.; Thal, L. J. N. Engl. J. Med. 1997, 336, 1216. (b) Veld, B.
A.; Ruitenberg, A.; Hofman, A.; Launer, L. J.; van Duijn, C. M.; Stijnen,
T.; Breteler, M. M. B.; Stricker, B. H. C. N. Engl. J. Med. 2001, 345,
1515.
(37) (a) Bonina, F.; Puglia, C.; Rimoli, M. G.; Avallone, L.; Abignente, E.;
Boatto, G.; Nieddu, M.; Meli, R.; Amorena, M.; de Caprariis, P. Eur. J.
Pharm. Sci. 2002, 16, 167. (b) Rouquayrol, M.; Gaucher, W.; Greiner, J.;
Aubertin, A. M.; Vierling, P.; Guedj, R. Carbohydr. Res. 2001, 336, 161.
(45) Mabbs, F. E.; Machin, D. J. Magnetism and Transition Metal Complexes;
Chapman and Hall: London, 1961.
9
J. AM. CHEM. SOC. VOL. 129, NO. 23, 2007 7455