Angewandte
Chemie
P. Kondratyuk, S. T. Forth, S. A. FitzGerald, L. Chen, J. K.
Johnson, J. T. Yates, Jr., J. Am. Chem. Soc. 2003, 125, 5889 –
5896; e) A. Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y.
Maniwa, S. Suzuki, Y. Achiba, Chem. Phys. Lett. 2001, 336, 205 –
211.
[8] R. Rathore, S. V. Lindeman, K. S. S. Rao, D. Sun, J. K. Kochi,
Angew. Chem. 2000, 112, 2207 – 2211; Angew. Chem. Int. Ed.
2000, 39, 2123 – 2127.
[9] Experiments with wider (and more flexible) calix[5]-, calix[6]-,
and calix[8]arenes did not lead to entrapment of NO+; no
characteristic color change was detected upon mixing with NO2/
N2O4. This observation once again rules out the possibility of
coordination of NO+ outside the calixarene cavity.
[10] a) G. S. Heo, P. E. Hillman, R. A. Bartsch, J. Heterocycl. Chem.
1982, 19, 1099 – 1103; b) S. Ricard, P. Audet, R. Savoie, J. Mol.
Struct. 1988, 178, 135 – 140; c) K. Y. Lee, D. J. Kuchynka, J. K.
Kochi, Inorg. Chem. 1990, 29, 4196 – 4204; d) G. I. Borodkin,
V. G. Shubin, Russ. Chem. Rev. 2001, 70, 211 – 230.
[11] a) Y. Kang, D. M. Rudkevich, Tetrahedron 2004, 60, 11219 –
11225; b) Y. Kang, G. V. Zyryanov, D. M. Rudkevich, Chem.
Eur. J. 2005, 11, 1924 – 1932.
[12] For guest transport in organic solids, see: a) J. L. Atwood, L. J.
Barbour, A. Jerga, B. L. Schottel, Science 2002, 298, 1000 – 1002;
b) O. Ohmori, M. Kawano, M. Fujita, J. Am. Chem. Soc. 2004,
126, 16292 – 16293.
[3] For self-assembling nanotubes, see: a) D. T. Bong, T. D. Clark,
J. R. Granja, M. R. Ghadiri, Angew. Chem. 2001, 113, 1016 –
1041; Angew. Chem. Int. Ed. 2001, 40, 988 – 1011; b) S. Matile, A.
Som, N. Sorde, Tetrahedron 2004, 60, 6405 – 6435; c) T. Yama-
guchi, S. Tashiro, M. Tominaga, M. Kawano, T. Ozeki, M. Fujita,
J. Am. Chem. Soc. 2004, 126, 10818 – 10819; d) S. Tashiro, M.
Tominaga, T. Kusukawa, M. Kawano, S. Sakamoto, K. Yama-
guchi, M. Fujita, Angew. Chem. 2003, 115, 3389 – 3392; Angew.
Chem. Int. Ed. 2003, 42, 3267 – 3270; e) M. Tominaga, S. Tashiro,
M. Aoyagi, M. Fujita, Chem. Commun. 2002, 2038 – 2039; f) V.
Sidorov, F. W. Kotch, G. Abdrakhmanova, R. Mizani, J. C.
Fettinger, J. T. Davis, J. Am. Chem. Soc. 2002, 124, 2267 – 2278;
g) L. Baldini, F. Sansone, A. Casnati, F. Ugozzoli, R. Ungaro, J.
Supramol. Chem. 2002, 219 – 226.
[4] For covalently linked nanotubes, see: a) A. Harada, J. Li, M.
Kamachi, Nature 1993, 364, 516 – 518; b) A. Ikeda, S. Shinkai, J.
Chem. Soc. Chem. Commun. 1994, 2375 – 2376; c) A. Ikeda, M.
Kawaguchi, S. Shinkai, Quim. Anal. Int. Ed. 1997, 93, 408 – 414;
d) J.-A. Perez-Adelmar, H. Abraham, C. Sanchez, K. Rissanen,
P. Prados, J. de Mendoza, Angew. Chem. 1996, 108, 1088 – 1090;
Angew. Chem. Int. Ed. Engl. 1996, 35, 1009 – 1011; e) S. K. Kim,
W. Sim, J. Vicens, J. S. Kim, Tetrahedron Lett. 2003, 44, 805 – 809;
f) S. K. Kim, J. Vicens, K.-M. Park, S. S. Lee, J. S. Kim,
Tetrahedron Lett. 2003, 44, 993 – 997; g) Y. Kim, M. F. Mayer,
S. C. Zimmerman, Angew. Chem. 2003, 115, 1153 – 1158; Angew.
Chem. Int. Ed. 2003, 42, 1121 – 1126.
[5] G. V. Zyryanov, Y. Kang, D. M. Rudkevich, J. Am. Chem. Soc.
2003, 125, 2997 – 3007.
[6] G. V. Zyryanov, D. M. Rudkevich, J. Am. Chem. Soc. 2004, 126,
4264 – 4270.
[7] Crystals of suitable quality of 1a and 1b for X-ray studies were
obtained from CHCl3/CH3OH solutions at room temperature.
The X-ray intensity data were measured at 100(2) K on a Bruker
SMART APEX CCD area detector system equipped with a
Oxford Cryosystems 700 Series cooler, a graphite monochro-
mator, and a MoKa fine-focus sealed tube (l = 0.710 73 ꢀ). The
data frames were integrated with the Bruker SAINT-Plus
(version 6.45) software package. Structures were solved and
refined using Bruker SHELXTL (version 6.14) software pack-
age. X-ray data for 1a·2CHCl3; C78H86Cl6O10, Monoclinic, Space
group P21/n; a = 17.9825(7), b = 10.6205(4) ꢀ, c = 19.8479(7) ꢀ,
b = 111.7390(10)8, V= 3521.0(2) ꢀ3, Z = 2, 1calcd = 1.317 MgmÀ3
,
the hydrogen atoms were placed in idealized positions and
included as riding atoms. All non-hydrogen atoms were refined
anisotropically. R1, wR2 (I > 2s(I)) = 0.0397, wR2 = 0.1024; R1,
wR2 (all data) = 0.0465, 0.1077, GOF = 1.040. X-ray data for
¯
1b·4.5CHCl3; C116.5H124.5Cl13.5O16, Triclinic, Space group P1, a =
14.7634(6) ꢀ, b = 15.2376(6) ꢀ, c = 26.4844(11), ꢀ, a =
75.9360(10)8,
b = 78.0270(10)8,
g = 80.0890(10)8,
V=
5606.9(4) ꢀ3, Z = 2, 1calcd = 1.338 MgmÀ3, the hydrogen atoms
were placed in idealized positions and included as riding atoms.
All the chloroform molecules show severe disorder. One of the
n-propyl groups is also disordered. These disorders were
modeled reasonably well. All non-hydrogen atoms were refined
anisotropically, R1, wR2 (I > 2s(I)) = 0.0828, 0.1667; R1, wR2
(all data) = 0.1100, 0.1783, GOF = 1.105. CCDC 259477 (1a) and
259478 (1b) contain the supplementary crystallographic data for
this paper. These data can be obtained free of charge from the
uk/data_request/cif.
Angew. Chem. Int. Ed. 2005, 44, 3043 –3047
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3047