4262
C. Abbineni et al. / Tetrahedron Letters 48 (2007) 4259–4262
Chem. Soc. 2003, 125, 15512; (c) Colby, E. A.; O’Brien, K.
C.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 4297.
5. (a) Evans, D. A.; Rieger, D. L.; Bilodeau, M. T.; Urpi, F.
J. Am. Chem. Soc. 1991, 113, 1047; (b) Crimmins, M. T.;
King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem.
2001, 66, 894, and references cited therein.
see: (a) Batmangherlich, S.; Davidson, A. H. Tetrahedron
Lett. 1983, 24, 2889; (b) Piotti, M. E.; Alper, H.
J. Org. Chem. 1997, 62, 8484; (c) Langer, P.; Eckardt, T.
Angew. Chem., Int. Ed. 2000, 39, 4343; (d) Langer, P.;
Krummel, T. Chem. Eur. J. 2001, 7, 1720; (e) Pound, M.
K.; Davies, D. L.; Pilkington, M.; de Pina Vaz Sousa, M.
M.; Wallis, J. D. Tetrahedron Lett. 2002, 43, 1915; (f) Ref.
11c.
6. Crimmins, M. T.; Kirincich, S. J.; Wells, A. J.; Choy, A. L.
Synth. Commun. 1998, 28, 3675.
7. Prashad, M.; Kim, H.-Y.; Lu, Y.; Liu, Y.; Har, D.; Repic,
O.; Blacklock, T. J.; Giannousis, P. J.Org. Chem. 1999, 64,
1750.
8. For recent examples of the oxy-Michael reaction, see: (a)
Honda, T.; Ishikawa, F. J. Org. Chem. 1999, 64, 5542; (b)
Kubota, T.; Tsuda, M.; Kobayashi, J. Org. Lett. 2001, 3,
1363; (c) Kigoshi, H.; Kita, M.; Ogawa, S.; Itoh, M.;
Uemura, D. Org. Lett. 2003, 5, 957.
9. Base mediated epimerisation based on a ring-opening/
ring-closure mechanism cannot be ruled out, see: Freifeld,
I.; Holtz, E.; Dahmann, G.; Langer, P. Eur. J. Org. Chem.
2006, 3251.
10. The stereochemistry was determined by NOE experiments.
11. (a) Al-Tel, T. H.; Voelter, W. J. Chem. Soc., Chem.
Commun. 1995, 239; (b) Langer, P.; Armbrust, H.;
Eckardt, T.; Magull, J. Chem. Eur. J. 2002, 8, 1443, and
references cited therein; (c) Bellur, E.; Bottcher, D.;
Bornscheuer, U.; Langer, P. Tetrahedron: Asymmetry
2006, 17, 892, and references cited therein.
12. For some recent examples, see: (a) Bellur, E.; Langer, P. J.
Org. Chem. 2005, 70, 3819; (b) Tang, E.; Huang, X.; Xu,
W.-M. Tetrahedron 2004, 60, 9963; (c) Langer, P.; Frei-
feld, I.; Holtz, E. Synlett 2000, 4, 501.
13. (a) White, J. D.; Kranemann, C. L.; Kuntiyong, P. Org.
Lett. 2001, 3, 4003; (b) Semmelhack, M. F.; Kim, C.;
Zhang, N.; Bodurow, C.; Sanner, M.; Dobler, W.; Meier,
M. Pure Appl. Chem. 1990, 62, 2035.
15. Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R.
H. J. Am. Chem. Soc. 2003, 125, 11360.
16. Riley, R. G.; Silverstein, R. M. Tetrahedron 1974, 30,
1171.
17. Compound characterisation data for 12-trans: 1H NMR
(CDCl3, 400 MHz): d 5.86–5.76 (m, 1H), 5.13–5.03 (m,
2H), 4.52–4.45 (m, 1H), 3.98–3.94 (m, 1H), 3.68 (s, 3H),
2.63 (dd, J = 15.2, 6.8 Hz, 1H), 2.43 (dd, J = 15.2, 6.2 Hz,
1H), 2.34–2.26 (m, 2H), 2.20–2.13 (m, 1H), 1.90–1.78 (m,
2H), 0.95 (d, J = 7.4 Hz, 3H); 13C NMR (CDCl3,
50 MHz): d 171.6, 135.2, 116.5, 80.8, 73.2, 51.6, 41.3,
39.7, 35.7, 34.9, 13.9; CIMS: m/z 199 (M+1). Compound
13: 1H NMR (CDCl3, 400 MHz): d 5.86–5.77 (m, 1H),
5.29 (t, J = 1.5 Hz, 1H), 5.19–5.11 (m, 2H), 4.37–4.32 (m,
1H), 4.12 (q, J = 7.2 Hz, 2H), 3.11 (ddd, J = 18.0, 7.6,
2.0 Hz, 1H), 2.99 (ddd, J = 18.0, 4.0, 1.6 Hz, 1H), 2.52–
2.31 (m, 2H), 2.34–2.25 (m, 1H), 1.26 (t, J = 7.2 Hz, 3H),
0.97 (d, J = 7.3, 3H); 13C NMR (CDCl3, 50 MHz): d
175.5, 168.8, 133.7, 117.7, 90.1, 85.2, 59.2, 38.8, 34.2, 33.8,
14.5, 13.6; ESMS: m/z 233 (M+23), HRMS m/z 233.1156,
1
calcd for C12H18O3Na 233.1154. Compound 5: H NMR
(CDCl3, 400 MHz): d 4.17–4.09 (m, 1H), 3.85–3.78 (m,
1H), 3.74–3.66 (m, 2H), 2.51–2.41 (m, 1H), 2.26–2.14 (m,
1H), 1.87–1.58 (m, 4H), 1.50–1.27 (m, 8H), 1.18 (d,
J = 7.0 Hz, 3H), 0.89 (s, 9H), 0.89 (d, J = 7.0 Hz, 3H),
0.05 (s, 6H); 13C NMR (CDCl3, 50 MHz): d 181.8, 80.8,
73.7, 60.7, 40.2, 39.9, 39.2, 35.9, 33.5, 30.2, 27.4, 26.7, 26.0,
18.3, 16.8, 14.1, ꢀ5.3; ESMS: m/z 395 (M+23); HRMS
m/z 395.2594, calcd for C20H40O4SiNa 395.2589.
14. Isomerisation of
Z to E configuration of 2-alkyl-
idenetetrahydrofurans is well documented in literature,