Figure 3. Partial 1H NMR spectra (600 MHz) recorded in
CD3OD of a mixture of isomers of BRS6•12TFA where some of
the p-tolylpentenyloxy substituents adopt an E configuration and
others a Z configuration. Primed letters relate to this stereohetero-
genicity.
Figure 4. HR-ESI MS of BRO6•12TFA following OXM with
4-methylstyrene employing the Grubbs second-generation catalyst.
appeared to be no evident peaks that corresponded to
unreacted BRO6•12TFA or complete OXM functionalization
to afford BRS6•12TFA.22
distribution21 of cross-metathesis products. The HR-ESI MS
revealed key peaks at m/z 1022.4319 for [BRO1S5•12TFA-
5TFA]5+, 950.3944 for [BRO5S1•12TFA-5TFA]5+, 833.1957
for [BRO1S5•12TFA-6TFA]6+,788.1723for [BRO4S2•12TFA-
6TFA]6+, and 646.5716 for [BRO5S1•12TFA-7TFA]7+.
From an analysis of HR-ESI MS data obtained, it is
evident that the dominant product of the OXM reactions is
one that results from five cross metatheses and that there
The efficient convergent formation of both hexaolefinic
and hexa-p-tolylpentenyloxy Borromeates has been de-
scribed. This introduction of a further level of sophistication
structure-wise into the metal-containing BRs opens up the
ability to create new Borromeates and BR compounds. The
making of hexasubstituted Borromeates divergently is still
an open challenge, as demonstrated by the application of
ruthenium-catalyzed OXM to a pre-assembled hexaolefinic
Borromeate core.
(19) For previous examples of ruthenium-catalyzed metathesis reactions
involving mechanically interlocked compounds, see: (a) Dietrich-Buchecker,
C.; Rapenne, G. N.; Sauvage, J.-P. Chem. Commun. 1997, 2053-2054. (b)
Mohr, B.; Weck, M.; Sauvage, J.-P.; Grubbs, R. H. Angew. Chem., Int. Ed.
Engl. 1997, 36, 1308-1310. (c) Hamilton, D. G.; Sanders, J. K. M. Chem.
Commun. 1998, 1749-1750. (d) Hamilton, D. G.; Feeder, N.; Teat, S. J.;
Sanders, J. K. M. New J. Chem. 1998, 22, 1019-1021. (e) Dietrich-
Buchecker, C.; Rapenne, G. N.; Sauvage, J.-P. J. Am. Chem. Soc. 1999,
121, 994-1001. (f) Dietrich-Buchecker, C.; Sauvage, J.-P. Chem. Commun.
1999, 615-616. (g) Kidd, T. J.; Leigh, D. A.; Wilson, A. J. J. Am. Chem.
Soc. 1999, 121, 1599-1600. (h) Leigh, D. A.; Lusby, P. J.; Teat, S. J.;
Wilson, A. J.; Wong, J. K. Y. Angew. Chem., Int. Ed. 2001, 40, 1538-
1543. (i) Collin, J. P.; Laemmel, A. C.; Sauvage, J.-P. New J. Chem. 2001,
25, 22-24. (j) Raehm, L.; Hamilton, D. G.; Sanders, J. K. M. Synlett 2002,
1743-1761. (k) Hannam, J. S.; Kidd, T. J.; Leigh, D. A.; Wilson, A. J.
Org. Lett. 2003, 5, 1907-1910. (l) Kaiser, G.; Jarrosson, T.; Otto, S.; Ng,
Y. F.; Bond, A. D.; Sanders, J. K. M. Angew. Chem., Int. Ed. 2004, 43,
1959-1962. (m) Vignon, S. A.; Jarrosson, T.; Iijima, T.; Tseng, H.-R.;
Sanders, J. K. M.; Stoddart, J. F. J. Am. Chem. Soc. 2004, 126, 9884-
9885. (n) Fuller, A. M. L.; Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z.;
Walker, D. B. J. Am. Chem. Soc. 2005, 127, 12612-12619. (o) Guidry, E.
N.; Cantrill, S. J.; Stoddart, J. F,; Grubbs, R. H. Org. Lett. 2005, 7, 2129-
2132. (p) Cantrill, S. J.; Grubbs, R. H.; Lanari, D.; Leung, K. C.-F.; Nelson,
A.; Poulin-Kerstien, K. G.; Smidt, S. P.; Stoddart, J. F.; Tirrell, D. A. Org.
Lett. 2005, 7, 4213-4216. (q) South, C. R.; Higley, M. N.; Leung, K. C.-
F.; Lanari, D.; Nelson, A.; Grubbs, R. H.; Stoddart, J. F.; Weck, M. Chem.s
Eur. J. 2006, 12, 3789-3797. (r) South, C. R.; Higley, K. C.-F.; Lanari,
D.; Stoddart, J. F.; Weck, M. Macromolecules 2006, 39, 3738-3744. (s)
Hou, H.; Leung, K. C.-F.; Lanari, D.; Nelson, A.; Stoddart, J. F.; Grubbs,
R. H. J. Am. Chem. Soc. 2006, 128, 15358-15359.
Acknowledgment. We thank the National Science Foun-
dation (NSF) for supporting this research.
Supporting Information Available: Synthetic procedures
for the synthesis of O-DFP, BRO6•12TFA, S-DFP, BRS6•
12TFA and OXM reactions, mass spectrometric and room
temperature 1H and 13C NMR spectroscopic data, as well as
the distance and angle measurements associated with all
noncovalent and metal bonding interactions present in the
BRO6•12TFA. This material is available free of charge via
OL070535Y
(20) Chatterjee, A. K.; Toste, F. D.; Choi, T.-L.; Grubbs, R. H. AdV.
Synth. Catal. 2002, 344, 634-637.
(21) BROnSm will be used to indicate the number of successful OXM
reactions, where O ) olefin, S ) styrene, n ) number of unreacted olefin
tethers, and m ) number of styrene residues.
(22) Given that the product distribution observed in the HR-ESI MS is
highly skewed toward lower molecular weight compounds, we believe that,
even though we could not positively identify a peak for BRS6, it does not
eliminate the real possibility of it being present in a considerable amount
in the product mixture.
2436
Org. Lett., Vol. 9, No. 13, 2007