F. Michel, F. Thomas, S. Hamman, C. Philouze, E. Saint-Aman, J.-L. Pierre
FULL PAPER
[31]
[32]
[33]
[60] R. Liu, K. Morokuma, A. M. Mebel, M. C. Lin, J. Phys.
Chem. 1996, 100, 9314.
[61] A. Hinchliffe, R. E. Steinbank, M. A. Ali, Theor. Chim. Acta
1996, 5, 95.
[62] H. M. Chang, H. H. Jaffe, Chem. Phys. Lett. 1973, 23, 146.
[63] H. M. Chang, H. H. Jaffe, C. A. Masmandis, J. Phys. Chem.
1975, 79, 1118.
[64] J. Takahashi, T. Shida, Bull. Chem. Soc. Jpn. 1994, 67, 2038.
[65] J. Takahashi, T. Momose, T. Shida, Bull. Chem. Soc. Jpn. 1994,
67, 964.
C. Ochs, F. E. Hahn, R. Fröhlich, Eur. J. Inorg. Chem. 2001,
2427.
M. Vaidyannathan, M. Palaniandavar, R. S. Gopalan, Inorg.
Chim. Acta 2001, 324, 241.
L. Benisvy, A. J. Blake, D. Collison, E. S. Davies, C. D. Garner,
E. J. L. McInnes, J. McMaster, G. Whittaker, C. Wilson, Chem.
Commun. 2001, 1824.
M. Vaidyanathan, M. Palaniandavar, R. S. Gopalan, Inorg.
Chim. Acta 2001, 324, 241.
F. Thomas, G. Gellon, I. Gautier-Luneau, E. Saint-Aman, J.-
L. Pierre, Angew. Chem. Int. Ed. 2002, 41, 3047.
M. Vaidyanathan, M. Palaniandavar, R. S. Gopalan, Ind. J.
Chem. A 2003, 42, 2210.
[34]
[35]
[36]
[37]
[66] L. J. Johnston, N. Mathivanan, F. Negri, W. Siebrand, F. Zer-
betto, Can. J. Chem. 1993, 71, 1655.
[67] J. G. Radziszewski, M. Gil, A. Gorski, J. Spanget-Larsen, J.
Waluk, B. J. Mroz, J. Chem. Phys. 2001, 115, 9733.
[68] The thermodynamic feasibility of the reaction has been probed
by recording the CV curve of Cu(ClO4)2·6H2O in CH3CN. The
curve revealed a reduction peak at 0.32 V corresponding to the
metal centered reduction wave of the hexaaquacopper(II). On
the reverse scan, the oxidation peak is observed at a much
higher value, 0.80 V, showing that a rearrangement in the metal
coordination sphere occurs [this can be interpreted as the re-
placement of the water molecules by acetonitrile that stabilizes
the copper(I) formal oxidation state]. The copper(II) ion is thus
a strong oxidizer in acetonitrile, which can readily oxidize all
of the copper(II) phenolate complexes ([CuII(HLH)]2+ and
[CuII(HLMe)]2+) to the corresponding copper(II) phenoxyl rad-
ical complexes.
[69] When zero to one molar equiv. of copper(II) is added to aceto-
nitrile solutions of HLH, HLMe and HLtBu, in the presence of
NEt3, the phenolate copper(II) complexes are obtained, which-
ever ligand is used (the exogenous base NEt3 scavenges the
phenolic proton). Addition of one to two molar equiv. of cop-
per(II) results in the disappearance of the phenolate copper(II)
complex (characterized by its phenolate to copper CT transi-
tion). The UV/Vis spectra, after the addition of two molar
equiv. of copper(II), exhibit absorption bands at around 400,
435 and 700 nm for HLH and HLMe, and 416 and 650 nm for
HLtBu. These features are similar to those of the electrogener-
ated [CuII(LH)]·2+ and [CuII(LtBu)]·2+ complexes, respectively.
The copper(II) phenolate complexes are thus quantitatively ox-
idized by excess copper(II) to give the corresponding copper(II)
phenoxyl complexes.
G. Klein, J. M. Robertus, M. Watanabee, R. C. Pratt, T. D. P.
Stack, Chem. Commun. 2003, 630.
[38]
[39]
R. C. Pratt, T. D. P. Stack, J. Am. Chem. Soc. 2003, 125, 8716.
A. Neves, A. dos Anjos, A. J. Bortoluzzi, B. Szpoganicz, E. W.
Schwingel, A. S. Mangrich, Inorg. Chim. Acta 2003, 356, 41.
O. Seneque, M. Campion, B. Douziech, M. Giorgi, Y. Le Mest,
O. Reinaud, Dalton Trans. 2003, 4216.
[40]
[41]
F. Thomas, O. Jarjayes, C. Duboc, C. Philouze, E. Saint-Aman,
J.-L. Pierre, Dalton Trans. 2004, 2662.
[42]
[43]
R. C. Pratt, T. D. P. Stack, Inorg. Chem. 2004, 43, 8030.
M. Taki, H. Hattori, T. Osako, S. Nagatomo, M. Shiro, T. Kit-
agawa, S. Itoh, Inorg. Chim. Acta 2004, 357, 3369.
T. K. Paine, T. Weyhermüller, K. Wieghardt, P. Chaudhuri,
Dalton Trans. 2004, 2092.
[44]
[45] P. Chaudhuri, K. Wieghardt, T. Weyhermüller, T. K. Paine, S.
Mukherjee, C. Mukherjee, Biol. Chem. 2005, 386, 1023.
[46] A. Dos Anjos, A. J. Bortoluzzi, R. E. H. M. B. Osorio, R. A.
Peralta, G. R. Friedermann, A. S. Mangrich, A. Neves, Inorg.
Chem. Commun. 2005, 8, 249.
[47] E. Zueva, P. H. Walton, J. E. McGrady, Dalton Trans. 2006,
159.
[48] A. K. Nairn, S. J. Archibald, R. Bhalla, B. C. Gilbert, E. J. Ma-
cLean, S. J. Teat, P. H. Walton, Dalton Trans. 2006, 172.
[49] A. Philibert, F. Thomas, C. Philouze, S. Hamman, E. Saint-
Aman, J.-L. Pierre, Chem. Eur. J. 2003, 9, 3803.
[50] F. Michel, F. Thomas, S. Hamman, E. Saint-Aman, C. Bucher,
J.-L. Pierre, Chem. Eur. J. 2004, 10, 4115.
[51] C. Xie, P. M. Lahti, Tetrahedron Lett. 1999, 40, 4305.
[52] L. Benisvy, A. J. Blake, D. Collison, E. S. Davies, C. D. Garner,
E. J. L. McInnes, J. McMaster, G. Whittaker, C. Wilson, Dalton
Trans. 2003, 1975.
[53] C. G. Saysell, T. Barna, C. D. Borman, A. J. Baron, M. J. Mc-
Pherson, A. G. Sykes, J. Biol. Inorg. Chem. 1997, 2, 702.
[54] F. Michel, F. Thomas, S. Hamman, C. Philouze, E. Saint-
Aman, J.-L. Pierre, unpublished results.
[70] C. Wright, A. G. Sykes, J. Inorg. Biochem. 2001, 5, 237.
[71] P. Nordlund, B.-M. Sjöberg, H. Eklund, Nature 1990, 345, 593.
[72] S. Un, M. Atta, M. Fontecave, A. W. Rutherford, J. Am. Chem.
Soc. 1995, 117, 10713.
[73] P. P. Schmidt, K. K. Andersson, A.-L. Barra, L. Thelander, A.
Graslünd, J. Biol. Chem. 1996, 271, 23615.
[74] P. J. Van Dam, J. P. Willems, P. P. Schmidt, S. Pötsch, A. L.
Barra, W. R. Hagens, B. M. Hoffman, K. K. Andersson, A.
Gräslund, J. Am. Chem. Soc. 1998, 120, 5080.
[75] B. A. Diner, D. A. Force, D. W. Randall, R. D. Britt, Biochem-
istry 1998, 37, 17931.
[55] UV/Vis data [λmax (nm) (ε {–1 cm–1})] for [CuII(LH)]·2+: 401
(6560), 435 (4270), 694 (2420); for [CuII(HLH)]·3+: 400 (11044),
435 (5200), 689 (3310). Complex [CuII(LMe)]·2+ was too un-
stable to allow accurate ε values to be determined. The UV/
Vis spectrum of [CuII(LMe)]·2+ was found to be temperature-
dependent (reversible process): the absorption bands at 395,
450 (shoulder) and 700 nm are only present at 298 K. Lowering
the temperature to 233 K results in the disappearance of the
lower energy absorption band, and changes in the 450 nm re-
gion. The same behavior is observed in the presence of excess
pyridine (acting as an exogenous ligand, see ref.[4]). This is
therefore not due to temperature dependent copper(II) coordi-
nation by the p-N-methylbenzimidazole moiety. Given the lack
of additional information, more detailed discussion of this phe-
nomenon would be premature.
[76] J. Stubbe, W. A. van der Donk, Chem. Rev. 1998, 98, 705.
[77] P. Dorlet, A. W. Rutherford, S. Un, Biochemistry 2000, 39,
7826.
[78] Y.-N. Wang, L. A. Eriksson, Int. J. Quantum Chem. 2001, 83,
220.
[79] P. Faller, C. Goussias, A. W. Rutherford, S. Un, Proc. Nat.
Acad. Sc. USA 2003, 100, 8732.
[80] T. Maki, Y. Araki, Y. Ishida, O. Onomura, Y. Matsumura, J.
Am. Chem. Soc. 2001, 123, 3371.
[81] I. J. Rhile, J. M. Mayer, J. Am. Chem. Soc. 2004, 126, 12718.
[82] D. Kanamori, A. Furukawa, T.-A. Okamura, H. Yamamoto,
N. Ueyama, Org. Biomol. Chem. 2005, 3, 1453.
[83] L. Benisvy, E. Bill, A. J. Blake, D. Collison, E. S. Davies, C. D.
Garner, G. McArdle, E. J. L. McInnes, J. McMaster, S. H. K.
Ross, C. Wilson, Dalton Trans. 2006, 258.
[56] B. A. Jazdzewski, W. B. Tolman, Coord. Chem. Rev. 2000, 200–
202, 633.
[57] S. Itoh, M. Taki, S. Fukuzumi, Coord. Chem. Rev. 2000, 198,
3.
[58] P. Chaudhuri, K. Wieghardt, Prog. Inorg. Chem. 2001, 50, 151.
[59] L. E. Kapinos, B. Song, H. Sigel, Chem. Eur. J. 1999, 5, 1794.
Received: March 31, 2006
Published Online: August 3, 2006
3696
www.eurjic.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2006, 3684–3696