3142 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 13
Brief Articles
Prot. Res. 1989, 34, 88-96. (c) Hruby, V.J.; Gehrig, C. A. Recent
developments in the design of receptor specific opioid peptides. Med.
Res. ReV. 1989, 9, 343-401. (d) Mosherg, H. I.; Hurst, R.; Hruby,
V. J.; Galligan, J. J.; Burks, T. F.; Gee, K.; Yamanura, H. I. [D-Pen2,L-
Cys5]Enkephalinamide and [D-Pen2,D-Cys5]enkephalinamide, con-
formationally constrained cycle enkephalinamide analogues with delta
receptor specificity. Biochem. Biophys. Res. Commun. 1982, 106,
506-512.
disulfide bridged analogue of angiotensin II. Bioorg. Med. Chem.
2003, 11, 985-990. (e) Kaptein, B.; Broxterman, Q. B.; Schoemaker,
H. E.; Rutjes, F. P. J. T.; Veerman, J. J. N.; Kamphuis, J.; Peggion,
C.; Formaggio, F.; Toniolo, C. Enantiopure CR-tetrasubstituted
R-amino acids. Chemo-enzymatic synthesis and application to turn-
forming peptides. Tetrahedron 2001, 57, 6567-6577.
(12) (a) Schiller, P. W.; Weltrowska, G.; Berezowska, I.; Lemieux, C.;
Chung, N. N.; Wilkes, B. C. Synthesis and in vitro opioid activity
profiles of novel cyclic enkephalin analogs. In Understanding Biology
Using Peptides; Proceedings of the 19th American Peptide Sympo-
sium, June 18-23, San Diego CA, 2005; Blondelle, S. E., Ed.;
American Peptide Society: La Costa, CA, 2005. (b) Schiller, P. W.
Opioid peptide analog design: from cyclic enkephalins to orally
active analgesics. Biopolymers 2005, 80, 492.
(13) (a) Han, So.-Y.; Kim, Y. A. Recent development of peptide coupling
reagents in organic synthesis. Tetrahedron 2004, 60, 2447. (b) Kim,
Y.-A.; Han, So.-Y. Comparative study of cyanuric fluoride and Bop-
Cl as carboxyl activators in peptide coupling reactions. Bull. Korean
Chem. Soc. 2000, 21, 943-946.
(14) (a) Trnka, T. M.; Grubbs, R. H. The development of L2X2Ru:CHR
olefin metathesis catalysts: An organometallic success story. Acc.
Chem. Res. 2001, 34, 18-29. (b) Chatterjee, A. K.; Grubbs, R. H.
Synthesis of trisubstituted alkenes via olefin cross-metathesis. Org.
Lett. 1999, 11, 1751-1753. (c) Scholl, M.; Ding, S.; Lee, C. W.;
Grubbs, R. H. Synthesis and activity of a new generation of
ruthenium-based olefin metathesis catalysts coordinated with 1,3-
dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett. 1999, 6,
953-956.
(15) (a) Kessler, H.; Seip, S. NMR of Peptide. In Two-dimensional NMR
Spectroscopy: Application for Chemists and Biochemists, 2nd ed.;
Croasmun, W. R., Carlson, R. M. K., Eds.; VCH Publishers: New
York, 1994; pp 619-650. (b) Braun, S.; Kalinowski, H. O.; Berger
S. 150 and More Basic NMR Experiments, 2nd ed.; Wiley-VCH:
Weinheim, 1998.
(16) Kramer T. H.; Davis P.; Hruby V. J.; Burks T. F.; Porreca F. In
vitro potency, affinity and agonist efficacy of highly selective delta
opioid receptor ligands J. Pharmacol. Exp. Ther. 1993, 266, 577-
584.
(17) Wang, Z.; Gardell, L. R.; Ossipov, M. H.; Vanderah, T. W.; Brennan,
B. B.; Hochgeschwender, U.; Hruby, V. J.; Malan, T. P., Jr.; Lai, J.;
Porreca, F. Pronociceptive actions of dynorphin maintain chronic
neuropathic pain. J. Neurosci. 2001, 21, 1779-1786.
(18) Szekeres, P. G.; Traynor, J. R. Delta opioid modulation of the binding
of guanosine-5′-O-(3-[35S]thio)triphosphate to NG108-15 cell mem-
branes: Characterization of agonist and inverse agonist effects. J.
Pharm. Exp. Ther. 1997, 283, 1284-1284.
(19) (a) Misicka, A.; Lipkowski, A. W.; Horvath, R.; Davis, P.; Kramer,
T. H.; Yamamura, H. I.; Hruby, V. J. Topographical requirements
for delta opioid ligands: Common structural features of dermen-
kephalin and deltorphin. Life Sci. 1992, 51, 1025-1032. (b) Hosohata,
K.; Varga, E. V.; Alfaro-Lopez, J.; Tang, X.; Vanderah, T. W.;
Porreca, F.; Hruby, V. J.; Roeske, W. R.; Yamamura, H. I.; (2S,3R)â-
methyl-2′,6′-dimethyltyrosine-L-tetrahydroisoquinoline-3-carboxyl-
ic acid [(2S,3R)TMT-L-Tic-OH] is a potent, selective δ opioid
receptor antagonist in mouse brain. J. Pharmacol. Exp. Ther. 2003,
304, 683-688. (c) Hruby, V. J.; Toth, G.; Gehrig, A. C.; Kao, L.-
Fa; Knapp, R.; Lui, G. K.; Yamamura, H. I.; Kramer, T. H.; Davis,
P.; Burks, T. F. Topographically designed Analogues of c[D-Pen2,D-
Pen5]enkephalin. J. Med. Chem. 1991, 34, 1823-1830. (d) Toth, G.;
Russell, K. C.; Landis, G.; Kramer, T. H.; Fang, L.; Knapp, R.; Davis,
P.; Burks, T. F.; Yamamura, H. I.; Hruby, V. J. Ring substituted and
other conformationally tyrosine analogues of c[D-Pen2,D-Pen5]-
enkephalin with δ opioid receptor selectivity. J. Med. Chem. 1992,
35, 2384-2391.
(20) (a) Ananthan, S. Opioid ligands with mixed µ/δ opioid receptor
interactions: An emerging approach to novel analgesics. AAPS
PharmSciTech 2006, 8, 118-125 and references cited therein. (b)
Horan, P. J.; Mattia, A.; Bilsky, E. J.; Weber, S.; Davis, T. P.;
Yamamura, H. I.; Malatynska, E.; Appleyard, S. M.; Slaninova, J.;
Misicka, A.; Lipkowski, A. W.; Hruby, V. J.; Porreca, F. Antinoci-
ceptive profile of biphalin, a dimeric enkephalin analog. J. Pharmacol.
Exp. Ther. 1993, 265, 1446-54.
(5) (a) Mosberg, H. I.; Hurst, R.; Hruby, V. J.; Cree, K.; Yamamura, H.
I.; Galligan, J. J.; Burks, T. F. Bis Penicillamine enkephalins possess
highly improved specificity toward δ opioid receptors. Proc. Natl.
Acad. Sci. U.S.A. 1983, 80, 5871-5871. (b) Collins, N.; Flippen-
Anderson, J.; Haaseth, R. C.; Deschamps, J. R.; George, C.; Kover,
K.; Hruby, V. J. Conformational determinants of agonist versus
antagonist properties of [D-Pen2,D-Pen5]enkephalin (DPDPE) analogs
at opioid receptors. Comparison of X-ray crystallographic structure,
solution 1H NMR data, and molecular dynamic simulations of [L-Ala3]-
DPDPE and [D-Ala3]DPDPE. J. Am. Chem. Soc. 1996, 118, 2143-
2152. (c) Bartosz-Bechowski, H.; Davis, P.; Zalewska, T.; Slaninova,
J.; Porreca, F.; Yamamura, H. I.; Hruby, V. J. Cyclic enkephalin
analogs with exceptional potency at peripheral δ opioid receptors.
J. Med. Chem. 1994, 37, 146-150. (d) Hruby, V. J.; Kao, L.-F.;
Pettitt, B. M.; Karplus, M. The conformational properties of the delta
opioid peptide [D-Pen2, D-Pen5]enkephalin in acqueous solution
determined by NMR and energy minimization calculations. J. Am.
Chem. Soc. 1988, 110, 3351-3359. (e) Akiyama, K.; Gee, K. W.;
Mosberg, H. I.; Hruby, V. J.; Yamamura, H. I. Characterization of
[3H] [D-Pen2-D-Pen5]enkephalin binding to δ opiate receptors in the
rat brain and neuroblastoma-glioma hybrid cell line (NG 108-15).
Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 2543-2547.
(6) (a) Voyer, N.; Lamothe, J. The use of peptidic frameworks for the
construction of molecular receptors and devices. Tetrahedron 1995,
51, 9241-9284. (b) Kaul, R.; Balaram, P. Stereochemical control
of peptide folding. Bioorg. Med. Chem. 1999, 7, 105-117. (c)
Andrews, M. J. I.; Tabor, A. B. Forming stable helical peptides using
natural and artificial amino acids. Tetrahedron 1999, 55, 11711-
11743. (c) Hruby, V. J.; Al-Obeidi, F.; Kasmierski, W. M. Emerging
approaches in the molecular design of receptor selective peptide
ligands: conformational topographical and dynamic considerations.
Biochem. J. 1990, 268, 249-262.
(7) (a) DiMaio, J.; Schiller, P. W. A cyclic enkephalin analog with high
in vitro opiate activity. Proc. Nat. Acad. Sci. U.S.A. 1980, 77, 7162-
7166. (b) DiMaio, J.; Nguyen, T. M. D.; Lemieux, C.; Schiller, P.
W. Synthesis and pharmacological characterization in vitro of cyclic
enkephalin analogs: Effect of conformational constraints on opiate
receptor selectivity. J. Med. Chem. 1982, 25, 1432-1438. (c) Schiller,
P. W.; Nguyen, T. M. D.; Miller, J. Synthesis of side-chain to side-
chain cyclized peptide analogs on solid supports. Int. J. Pept. Prot.
Res. 1985, 25, 171-177. (d) Siemion, I. Z.; Szewczuk, Z.; Herman,
Z. S.; Stachura, Z. To the problem of biologically active conformation
of enkephalin. Mol. Cell. Biochem. 1981, 34, 23-29.
(8) Keller, O.; Rudinger, J. Synthesis of (1,6-alpha,alpha′-diaminosuberic
acid)oxytocin (“dicarba-oxytocin”). HelV. Chim. Acta 1974, 57,
1253-1259.
(9) Stymiest, J. L.; Mitchell, B. F.; Wong, S.; Vederas, J. C. Synthesis
of biologically active dicarba analogues of the peptide hormone
oxytocin using ring-closing metathesis. Org. Lett. 2003, 5, 47-49.
(10) (a) Grubbs, R. H.; Chang, S. Recent advances in olefin metathesis
and its application in organic synthesis. Tetrahedron 1998, 54, 4413-
4450. (b) Armstrong, S. K. Ring closing diene metathesis in organic
synthesis. J. Chem. Soc., Perkin Trans. I 1998, 371-388. (c)
Blackwell, H. E.; Grubbs, R. H. Highly efficient synthesis of
covalently cross-linked peptide helices by ring closing metathesis.
Angew. Chem., Int. Ed. 1998, 37, 3281-3284.
(11) (a) Celanire, S.; Descamps-Francois, C.; Lesur, B.; Guillaumet, G.;
Joseph, B. Synthesis of 14-membered ring jaspamide derivatives. Lett.
Org. Chem. 2005, 2, 528-531. (b) Wels, B.; Kruijtzer, J. A. W.;
Garner, K.; Nijenhuis, W. A. J.; Gispen, W. H.; Adan, R. A. H.;
Liskamp, R. M. J. Synthesis of a novel potent cyclic peptide MC4-
ligand by ring-closing metathesis. Bioorg. Med. Chem. 2005, 13,
4221-4227. (c) Stymiest, J. L.; Mitchell, B. F.; Wong, S.; Vederas,
J. C. Synthesis of oxytocin analogues with replacement of sulfur by
carbon gives potent antagonists with increased stability. J. Org. Chem.
2003, 70, 7799-7809. (d) Schmidt, B.; Kuhn, C.; Ehlert, D. K.;
Lindeberg, G.; Lindman, S.; Karlen, A.; Hallberg, A. A frame shifted
JM061048B