C O M M U N I C A T I O N S
compounds and analogs thereof are ongoing. Given the high
structural homology among amino acid adenylation domains,11,12d
it will be of interest to determine whether such compounds can
inhibit other domains, thereby providing a broad spectrum means
to inhibit NRP biosynthetic pathways and to probe the biological
and therapeutic implications thereof. Broad inhibitors might also
synergistically inhibit multiple adenylation domains in an individual
pathway to afford increased potency15 and decreased susceptibility
to resistance conferring mutations.16
Acknowledgment. We thank Dr. George Sukenick, Hui Fang,
and Sylvi Rusli for mass spectral analyses. L.E.N.Q. is a Stavros
S. Niarchos Foundation Scholar. D.S.T. is a NYSTAR Watson
Investigator. Financial support from the NIH (R21 AI063384, P01
AI056293), William Randolph Hearst Foundation, William H.
Goodwin and Alice Goodwin and the Commonwealth Foundation
for Cancer Research, and MSKCC Experimental Therapeutics
Center is gratefully acknowledged.
Figure 2. Structures of adenylation domain inhibitors and general synthetic
approach to macrocycles.11 (R1, R2 ) Boc or H; Y ) NHBoc or H).
Supporting Information Available: Detailed experimental pro-
cedures and analytical data for all new compounds. This material is
Table 1. Inhibition of a Non-Ribosomal Peptide Synthetase Amino
Acid Adenylation Domain and of in Vitro Translation11
Kiapp
IC50 (in vitro
translation,
M)b
entry
compound
(HMWP2,
µ
M)a
µ
References
1
2
3
4
5
6
7
8
9
1a (L-Cys-AMS)
0.24 ( 0.02c 15.5 ( 0.3
(1) Keller, L.; Surette, M. G. Nat. ReV. Microbiol. 2006, 4, 249-258.
(2) Ratledge, C.; Dover, L. G. Annu. ReV. Microbiol. 2000, 54, 881-941.
(3) (a) Visca, P.; Imperi, F.; Lamont, I. L. Trends Microbiol. 2007, 15, 22-
30. (b) Stein, T. Mol. Microbiol. 2005, 56, 845-857. (c) Roongsawang,
N.; Hase, K.-i.; Haruki, M.; Imanaka, T.; Morikawa, M.; Kanaya, S. Chem.
Biol. 2003, 10, 869-880. (d) Hofemeister, J.; Conrad, B.; Adler, B.;
Hofemeister, B.; Feesche, J.; Kucheryava, N.; Steinborn, G.; Franke, P.;
Grammel, N.; Zwintscher, A.; Leenders, F.; Hitzeroth, G.; Vater, J. Mol.
Genet. Genom. 2004, 272, 363-378. (e) Raaijmakers, J. M.; de Bruijn,
I.; de Kock, M. J. D. Mol. Plant-Microbe Interact. 2006, 19, 699-710.
(f) Freeman, R.; Geier, H.; Weigel, K. M.; Do, J.; Ford, T. E.; Cangelosi,
G. A. Appl. EnViron. Microbiol. 2006, 72, 7554-7558.
(4) Nougayrede, J.-P.; Homburg, S.; Taieb, F.; Boury, M.; Brzuszkiewicz,
E.; Gottschalk, G.; Buchrieser, C.; Hacker, J.; Dobrindt, U.; Oswald, E.
Science 2006, 313, 848-851.
(5) Fischbach, M. A.; Walsh, C. T. Chem. ReV. 2006, 106, 3468-3496.
(6) Ferreras, J. A.; Ryu, J.-S.; Di Lello, F.; Tan, D. S.; Quadri, L. E. N. Nat.
Chem. Biol. 2005, 1, 29-32.
1b (L-Ala-AMS)
1c (D-Cys-AMS)
1d (D-Ala-AMS)
1e (Gly-AMS)
2.5
( 0.2
0.16 ( 0.03
0.37 ( 0.02
n.d.
n.d.
n.d.
>250
>250
n.d.
34
16
1.7
5.4
150
400
( 3
( 5
2a (cyclo8C â-L-Ala-AMS)
( 0.1d
( 0.8e
( 60
( 100
( 30
2
2b (cyclo8C â-L-Ala-AMS)
3
2c (cyclo8C â-D-Ala-AMS)
2
2d (cyclo8C â-D-Ala-AMS)
n.d.
3
10 2e (cyclo8C â-propionyl-AMS) 210
n.d.
3
a With 30 nM HMWP21-1491-His6, 1 mM [32P]-PPi, 3 mM ATP, 3 mM
L-cysteine. b n.d. ) not determined. c KiCys ) 0.101 ( 0.005 µM; KiATP
)
0.062 ( 0.002 µM.11 d KiCys ) 0.27 ( 0.03 µM; KiATP ) 0.179 (
0.005 µM. e KiCys ) 0.92 ( 0.06 µM; KiATP ) 0.57 ( 0.01 µM.
(7) (a) Somu, R. V.; Boshoff, H.; Qiao, C.; Bennett, E. M.; Barry, C. E., III;
Aldrich, C. C. J. Med. Chem. 2006, 49, 31-34. (b) Miethke, M.; Bisseret,
P.; Beckering, C. L.; Vignard, D.; Eustache, J.; Marahiel, M. A. FEBS J.
2006, 273, 409-419. (c) Callahan, B. P.; Lomino, J. V.; Wolfenden, R.
Bioorg. Med. Chem. Lett. 2006, 16, 3802-3805.
cycles 2. Linear aminoacyl-AMS analogs 1a-e were also synthe-
sized for comparison.
With this battery of compounds in hand, we set out to test their
inhibitory activities against the cysteine adenylation domain of
yersiniabactin synthetase HMWP2. Gratifyingly, both macrocycles
2a and 2b were potent inhibitors in a cysteine adenylation assay
(Table 1).11 Notably, the two-carbon-linked macrocycle 2a was
slightly more potent than L-alanyl-AMS (1b) and nearly as potent
as the “cognate” inhibitor L-cysteyl-AMS (1a). In contrast, mac-
rocycles 2c and 2d, which are analogs of D-alanyl-AMS (1d), and
desamino macrocycle 2e were all poor inhibitors.
(8) Ueda, H.; Shoku, Y.; Hayashi, N.; Mitsunaga, J.; In, Y.; Doi, M.; Inoue,
M.; Ishida, T. Biochim. Biophys. Acta 1991, 1080, 126-134.
(9) (a) Marahiel first used aminoacyl-AMS to inhibit adenylation domains:
Finking, R.; Neumueller, A.; Solsbacher, J.; Konz, D.; Kretzschmar, G.;
Schweitzer, M.; Krumm, T.; Marahiel, M. A. ChemBioChem 2003, 4,
903-906. (b) Recently, Marahiel cleverly targeted a D-alanine-specific
enzyme in bacteria: May, J. J.; Finking, R.; Wiegeshoff, F.; Weber, T. T.;
Bandur, N.; Koert, U.; Marahiel, M. A. FEBS J. 2005, 272, 2993-3003.
(10) (a) Conti, E.; Stachelhaus, T.; Marahiel, M. A.; Brick, P. EMBO J. 1997,
16, 4174-4183. (b) Reshetnikova, L.; Moor, N.; Lavrik, O.; Vassylyev,
D. G. J. Mol. Biol. 1999, 287, 555-568.
(11) See Supporting Information for full details.
To test our hypothesis that the macrocyclic constraints would
prevent these compounds from inhibiting aminoacyl-tRNA synthe-
tases, we used an in vitro translation assay containing all 20 of
these enzymes.11 While both L-cysteyl-AMS (1a) and L-alanyl-AMS
(1b) potently inhibited protein translation, presumably by targeting
the corresponding aminoacyl-tRNA synthetases, we were pleased
to find that macrocycles 2a and 2b showed no inhibitory activity at
up to 250 µM concentration. Thus, the macrocyclic structure pro-
vides exquisite selectivity for an amino acid adenylation domain
over aminoacyl-tRNA synthetases.
In summary, we have developed potent, highly selective mac-
rocyclic inhibitors of an amino acid adenylation domain that do
not inhibit aminoacyl-tRNA synthetases. We have exploited distinct
ligand binding conformations to distinguish between these mecha-
nistically related enzymes. Further studies to explore the scope of
adenylation domain inhibition and the cellular activity of these
(12) (a) May, J. J.; Kessler, N.; Marahiel, M. A.; Stubbs, M. T. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 12120-12125. (b) Hisanaga, Y.; Ago, H.;
Nakagawa, N.; Hamada, K.; Ida, K.; Yamamoto, M.; Hori, T.; Arii, Y.;
Sugahara, M.; Kuramitsu, S.; Yokoyama, S.; Miyano, M. J. Biol. Chem.
2004, 279, 31717-31726. (c) Nakatsu, T.; Ichiyama, S.; Hiratake, J.;
Saldanha, A.; Kobashi, N.; Sakata, K.; Kato, H. Nature 2006, 440, 372-
376. (d) See also: Stachelhaus, T.; Mootz, H. D.; Marahiel, M. A. Chem.
Biol. 1999, 6, 493-505.
(13) Gehring, A. M.; Mori, I.; Perry, R. D.; Walsh, C. T. Biochemistry 1998,
37, 11637-11650.
(14) For early examples, see: (a) Thaisrivongs, S.; Blinn, J. R.; Pals, D. T.;
Turner, S. R. J. Med. Chem. 1991, 34, 1276-1282. (b) Weber, A. E.;
Halgren, T. A.; Doyle, J. J.; Lynch, R. J.; Siegl, P. K. S.; Parsons, W. H.;
Greenlee, W. J.; Patchett, A. A. J. Med. Chem. 1991, 34, 2692-2701. (c)
Khan, A. R.; Parrish, J. C.; Fraser, M. E.; Smith, W. W.; Bartlett, P. A.;
James, M. N. G. Biochemistry 1998, 37, 16839-16845.
(15) A related effect was observed in our in vitro translation assay, with
L-alanyl-AMS (1b) exhibiting ∼100-fold increased potency and a much
higher Hill coefficient than L-cysteyl-AMS (1a), consistent with the 42
alanines versus 4 cysteines in the protein translated.11
(16) Spratt, B. G. Science 1994, 264, 388-393.
JA0721521
9
J. AM. CHEM. SOC. VOL. 129, NO. 25, 2007 7753