Intramolecular Anion Translocation
FULL PAPER
[2]
A
[14] V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini, Acc. Chem.
Res. 2001, 34, 488–493.
vacuum (0.32 g, 58% yield).
1H NMR (400 MHz, CD3CN): d=8.82 (m, 6H; Ha, H6, H6’), 8.52 (d, J=
8.0 Hz, 2H; H3), 8.48 (d, J=8.0 Hz, 2H; H3’), 7.92 (m, 4H; H4, H4’), 7.40
(m, 10H; Ha, Ha’, Hb, Hg, Hb, Hc, H5’), 5.32 (s, 4H; He), 5.40 ppm (s, 4H;
Hd); 13C NMR (400 MHz, CD3CN): d=155.5, 154.2, 149.9, 148.8, 147.0,
139.2, 138.3, 136.4, 135.0, 130.6, 130.5, 129.9, 129.5, 125.4, 123.4, 121.8,
121.5, 120.8, 119.9, 117.8, 87.5, 83.1, 53.2, 50.7 ppm; ESI-MS for
[15] V. Amendola, C. Brusoni, L. Fabbrizzi, C. Mangano, H. Miller, P.
Pallavicini, A. Perotti, A. Taglietti, J. Chem. Soc. Dalton Trans.
2001, 3528–3533.
[16] V. Amendola, L. Fabbrizzi, C. Mangano, H. Miller, P. Pallavicini, A.
Perotti, A. Taglietti, Angew. Chem. 2002, 114, 2665–2668; Angew.
Chem. Int. Ed. 2002, 41, 2553–2556.
[17] L. Fabbrizzi, F. Foti, S. Patroni, P. Pallavicini, A. Taglietti, Angew.
Chem. 2004, 116, 5183–5187; Angew. Chem. Int. Ed. 2004, 43, 5073–
5077.
[18] A. Aurora, M. Boiocchi, G. Dacarro, F. Foti, C. Mangano, P. Pallavi-
cini, S. Patroni, A. Taglietti, R. Zanoni, Chem. Eur. J. 2006, 12,
5535–5546.
[19] L. Fabbrizzi, M. Licchelli, P. Pallavicini, Acc. Chem. Res. 1999, 32,
846–853.
[20] G. De Santis, L. Fabbrizzi, D. Iacopino, P. Pallavicini, A. Perotti, A.
Poggi, Inorg. Chem. 1997, 36, 827–832.
[21] L. Fabbrizzi, F. Gatti, P. Pallavicini, E. Zambarbieri, Chem. Eur. J.
1999, 5, 682–690.
[22] a) Supramolecular Chemistry of Anions (Eds.: A. Bianchi, K.
Bowman-James, E. García-EspaÇa), Wiley-VCH, New York, 1997;
b) F. P. Schmidtchen, M. Berger, Chem. Rev. 1997, 97, 1609–1646;
c) P. D. Beer, Acc. Chem. Res. 1998, 31, 71–80; d) P. D. Beer, P. A.
Gale, Angew. Chem. 2001, 113, 502–532; Angew. Chem. Int. Ed.
2001, 40, 486–516; e) P. A. Gale, Coord. Chem. Rev. 2003, 240, 1–
226, f) R. Martínez-Mꢁꢂez; F. Sancenón Chem. Rev. 2003, 103,
4419–4476; g) V. Amendola, D. Esteban-Gomez, L. Fabbrizzi, M.
Licchelli, Acc. Chem. Res. 2006, 39, 343–353; h) V. Amendola, M.
Bonizzoni, D. Esteban-Gómez, L. Fabbrizzi, M. Licchelli, F. Sance-
nón, A. Taglietti, Coord. Chem. Rev. 2006, 250, 1451–1470; i) J. W.
Steed, Chem. Commun. 2006, 2637–2649; j) P. A. Gale, Acc. Chem.
Res. 2006, 39, 465–475.
C36H34N8P2F12: m/z: 288 [Mꢀ2PF6]2+
.
Synthesis of [3]PF6: A mixture of imidazole (0.65 g, 10.3 mmol) and
sodium hydride (0.43 g, 18.6 mmol) in dry THF (100 mL) was stirred for
15 min at room temperature. 5-(Bro-
momethyl)bipyridine
(1.28 g,
5.1 mmol) in THF (150 mL) was
added to the mixture, which was fur-
ther stirred overnight at room temper-
ature. Water was then added and THF
was rotary evaporated. The water
phase was extracted with CH2Cl2 (3100 mL); the collected organic
phases were first washed with water (100 mL) and then dried over
Na2SO4. Filtration and evaporation of the solvent yielded an oily product,
which was immediately used in the next step. The crude product (0.29 g,
1.23 mmol) was dissolved in CHCl3 (40 mL) and benzyl bromide (175 mL,
1.47 mmol) was added. The mixture was refluxed for three days, then the
solvent was removed and the orange residue was dissolved in the mini-
mum amount of water. The obtained solution was treated with saturated
NH4PF6 until the complete precipitation of [3]PF6 as a light-orange solid
(0.23 g, 40% yield).
1H NMR (400 MHz, CD3CN): d=8.72 (broad s, 2H; H6, H6’), 8.65 (s,
1H; Ha), 8.52 (d, J=8.0 Hz, 1H; H3), 8.46 (d, J=8.0 Hz, 1H; H3’), 7.95
(t, J=7.0, 8.0 Hz, 1H; H4’), 7.90 (dd, J=2.0, 8.0 Hz, 1H; H4), 7.45 (m,
8H; HBz, Hb, Hc, H5’), 5.32 (s, 2H; Hb), 5.41 ppm (s, 2H; Ha); ESI-MS for
C21H19N4PF6: m/z: 327 [M]+.
[23] J. L. Sessler, P. A. Gale, W. S. Cho, Anion Receptor Chemistry,
(Monographs in Supramolecular Chemistry, Ed.: J. F. Stoddart),
Royal Society of Chemistry, Cambridge, 2006.
[24] J. Yoon, S. K. Kim, N. J. Singh, K. S. Kim, Chem. Soc. Rev. 2006, 35,
355–360.
Acknowledgements
[25] A. P. Smith, L. C. Fraser in Comprehensive Coordination Chemis-
try II, Vol. 1 (Eds.: J. A. McCleverty, T. J. Meyer), Elsevier, New
York, 2004, pp. 1–23.
[26] V. Amendola, M. Boiocchi, B. Colasson, L. Fabbrizzi, M.-J. Rodri-
guez Douton, F. Ugozzoli, Angew. Chem. 2006, 118, 7074–7078;
Angew. Chem. Int. Ed. 2006, 45, 6920–6924.
The financial support of the Italian Ministry of University and Research
(PRIN—Dispositivi Supramolecolari; FIRB—Project RBNE019H9K) is
gratefully acknowledged.
[1] R. A. Bissell, E. Córdova, A. E. Kaifer, J. F. Stoddart, Nature 1994,
369, 133–137.
[27] Representative examples of X-ray-determined molecular structures
of [CuII(bpy)2(X)]+ complexes include: X=Clꢀ, Brꢀ, Iꢀ: a) C. OꢃSul-
A
[2] A. Livoreil, C. O. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem.
Soc. 1994, 116, 9399–9400.
[3] V. Balzani, A. Credi, M. Ventury, Molecular Devices and Machines:
A Journey Into the Nanoworld, Wiley-VCH, Weinheim, 2003.
[4] J.-M. Lehn, Supramolecular Chemistry:Concepts and Perspectives ,
Wiley-VCH, Weinheim, 1995, pp. 135–138.
livan, G. Murphy, B. Murphy, B. Hathaway, J. Chem. Soc. Dalton
Trans. 1999, 1835–1844; X=NCSꢀ: b) A. Sedov, J. Kozisek, M. Ka-
besova, M. Dunaj-Jurco, J. Gazo, J. Garaj, Inorg. Chim. Acta 1983,
75, 73; X=NO3ꢀ: c) P. Y. Zavalij, B. L. Burton, W. E. Jones, Jr.,
Acta Crystallogr. C:Cryst. Struct. Commun. 2002, 58, m330.
[28] For structural parameters of the [CuI(bpy)2]+ complex, see: a) H.
N
[5] L. Zelikovich, J. Libman, A. Shanzer, Nature 1995, 374, 790–792.
[6] A. Lutz, T. R. Ward, M. Albrecht, Tetrahedron 1996, 52, 12197–
12208.
Nakai, Bull. Chem. Soc. Jpn. 1983, 56, 1637–1641; b) M. Munakata,
S. Kitagawa, A. Asahara, H. Masuda, Bull. Chem. Soc. Jpn. 1987,
60, 1927–1929.
[7] A. Lutz, T. R. Ward, Helv. Chim. Acta 1998, 81, 207–218.
[8] C. Canevet, J. Libman, A. Shanzer, Angew. Chem. 1996, 108, 2842–
2845; Angew. Chem. Int. Ed. Eng. 1996, 35, 2657–2660.
[9] P. Belle, J.-L. Pierre, E. Saint-Aman, New J. Chem. 1998, 22, 1399–
1402.
[29] P. Gans, A. Sabatini, A. Vacca, Talanta 1996, 43, 1739–1753.
[30] a) V. Balzani, M. Gomez-Lopez, J. F. Stoddart, Acc. Chem. Res.
1998, 31, 405–414; b) V. Balzani, M. Clemente-León, A. Credi, B.
Ferrer, M. Venturi, A. H. Flood, J. F. Stoddart, Proc. Natl. Acad. Sci.
USA 2006, 103, 1178–1183.
[10] S. Zahn, J. W. Canary, Angew. Chem. 1998, 110, 321–323; Angew.
Chem. Int. Ed. 1998, 37, 305–307.
[11] T. R. Ward, A. Lutz, S. P. Parel, J. Ensling, P. Gütlich, P. Buglyó, C.
Orvig, Inorg. Chem. 1999, 38, 5007–5017.
[12] D. Kalny, M. Elhabiri, T. Moav, A. Vaskevich, I. Rubinstein, A.
Shanzer, A.-M. Albrecht-Gary, Chem. Commun. 2002, 1426–1427.
[13] V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini, A. Perotti,
A. Taglietti, J. Chem. Soc. Dalton Trans. 2000, 185–189.
[31] a) J.-P. Sauvage, Acc. Chem. Res. 1998, 31, 611–619; b) J.-P. Collin,
C. Dietrich-Buchecker, P. Gavina, M. C. Jimenez-Molero, J.-P. Sauv-
age, Acc. Chem. Res. 2001, 34, 477–487.
[32] J. Uenishi, T. Tanaka, K. Nishiwaki, S. Wakabayashi, S. Oae, H. Tsu-
kube J. Org. Chem. 1993, 58, 4382–4388.
Received: December 22, 2006
Published online: March 15, 2007
Chem. Eur. J. 2007, 13, 4988 – 4997
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4997